В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
VadimShoppert
VadimShoppert
03.08.2020 19:33 •  Математика

На координатной плоскости построить квадрат авсd если а(2; 0) в(0; 1), а произведение координат точки d отрицательно

Показать ответ
Ответ:
мур147
мур147
21.09.2020 22:18
Вот ответ!
На координатной плоскости построить квадрат авсd если а(2; 0) в(0; 1), а произведение координат точк
0,0(0 оценок)
Ответ:
nazarpetrenko1
nazarpetrenko1
26.01.2024 21:25
Хорошо, давайте разберем этот вопрос.

Для начала нам нужно использовать информацию о точках A и B, чтобы определить координаты вершин квадрата.

1. Запишем координаты точек A и B:
A(2;0)
B(0;1)

2. Чтобы построить квадрат, мы должны найти координаты оставшихся двух вершин (C и D).

3. Рассмотрим информацию о произведении координат точки D, которое должно быть отрицательным. Итак, допустим, мы выбрали точку D с координатами (x;y). Учитывая это условие, мы можем записать уравнение:

x * y < 0

Это неравенство учитывает отрицательное произведение координаты точки D, что нам нужно.

4. Чтобы более легко решить это неравенство, разобьем случаи по знакам обоих координат:

a) Если обе координаты положительны, то это означает, что точка D находится в первой или третьей четверти координатной плоскости. Например, если x > 0 и y > 0, то произведение x * y будет положительным, что не является нашим условием. Значит, такой случай нам не подходит.

b) Если обе координаты отрицательны, то точка D находится во второй или четвертой четверти координатной плоскости. Например, если x < 0 и y < 0, то произведение x * y будет положительным, что также не является нашим условием. Поэтому этот случай тоже не вариант.

c) В случае, когда одна из координат равна нулю, неравенство не имеет смысла. Если, например, x = 0, то x * y = 0, что не является показателем отрицательного произведения. Так что исключим данный случай.

d) Остается последний вариант - когда одна из координат положительна, а другая отрицательна. То есть либо x > 0 и y < 0, либо x < 0 и y > 0.

5. Вернемся к координатам точек A и B. Посмотрим на x-координаты: A(2) и B(0). Заметим, что x-координата точки A положительна, а точки B - нет.

6. Таким образом, мы можем выбрать точку D, у которой x-координата будет положительной (то есть D находится в первой или третьей четверти), а y-координата будет отрицательной ( D находится во второй или четвертой четверти), чтобы удовлетворить условию отрицательного произведения координат.

7. Поскольку D должна быть вершиной квадрата, она должна иметь одинаковое расстояние до точек A и B. Следовательно, D должна находиться на серединном перпендикуляре между A и B.

8. Построим серединный перпендикуляр (отрезок, перпендикулярный AB и проходящий через его середину). Для этого найдем середину отрезка AB.

Для середины координаты x средней точки:

x1 + x2 / 2 = (2 + 0) / 2 = 1

Для середины координаты y средней точки:

y1 + y2 / 2 = (0 + 1) / 2 = 1/2

Таким образом, координаты середины отрезка AB равны (1; 1/2).

9. Теперь мы можем построить серединный перпендикуляр через точку D.

Точка D должна быть на равном расстоянии от точек A и B, поэтому найдем середину отрезка AD (для удобства):

x1 + x3 / 2 = (2 + x3) / 2 = 1
x3 = 2 - 1 = 1

y1 + y3 / 2 = (0 + y3) / 2 = 1/2
y3 = 2 * 1/2 = 1

Таким образом, координаты точки D равны (1; 1).

10. Мы нашли координаты вершин квадрата. Итак, A(2;0), B(0;1), C(1;1/2), D(1;1).

11. На координатной плоскости построим точки A, B, C, D и соединим их линиями, чтобы получить квадрат ABCD.

12. Проверим отрицательность произведения координат точки D:

x * y = 1 * 1 = 1

Так как произведение координат D равно 1, а не отрицательное значение, мы должны исключить эту точку.

13. Возьмем другую точку в описанном выше промежутке x > 0 и y < 0, например, D(3; -2).

14. Проверим отрицательность произведения координат точки D:

x * y = 3 * (-2) = -6

Отрицательное произведение координат, то есть -6, соответствует нашему условию.

15. Таким образом, точка D(3; -2) является вершиной квадрата ABCD на координатной плоскости, где A(2;0), B(0;1), C(1;1/2) и D(3; -2).
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота