Номер 1: ОДЗ - Область допустимых значений. Такие значения икс, при которых существуют левая и правая части неравенства
Под буквой А нам подходят все иксы, так как нет никаких ограничений
Под буквой Б наше ОДЗ примет вид (для первой дроби) x∈(-∞;-3)∪(-3;+∞), а для второй дроби ОДЗ x∈(-∞;3)∪(3;+∞), так как при x = ±3 у нас в знаменателях оказываются нули, чего быть недолжно
Под буквой В упростим знаменатель второй дроби, вынеся общий множитель. И будет тогда x(x+2). ОДЗ первой дроби x∈(-∞;-2)∪(-2;+∞), а второй дроби x∈(-∞;-2)∪(-2;0)∪(0;+∞), так как при x = -2 и x = 0 у нас нули в знаменателях
Номер 2: Запишем суммы:
Номер 3: ОДЗ несократимых дробей: 1-ая дробь - все числа. 2-ая - все числа, кроме x = ±3. 3-я - все числа, кроме x=0 и x= -2
Номер 1: ОДЗ - Область допустимых значений. Такие значения икс, при которых существуют левая и правая части неравенства
Под буквой А нам подходят все иксы, так как нет никаких ограничений
Под буквой Б наше ОДЗ примет вид (для первой дроби) x∈(-∞;-3)∪(-3;+∞), а для второй дроби ОДЗ x∈(-∞;3)∪(3;+∞), так как при x = ±3 у нас в знаменателях оказываются нули, чего быть недолжно
Под буквой В упростим знаменатель второй дроби, вынеся общий множитель. И будет тогда x(x+2). ОДЗ первой дроби x∈(-∞;-2)∪(-2;+∞), а второй дроби x∈(-∞;-2)∪(-2;0)∪(0;+∞), так как при x = -2 и x = 0 у нас нули в знаменателях
Номер 2: Запишем суммы:
Номер 3: ОДЗ несократимых дробей: 1-ая дробь - все числа. 2-ая - все числа, кроме x = ±3. 3-я - все числа, кроме x=0 и x= -2
Номер 4:
Найдем значение дроби при x = -1. Тогда
При х = 0.25 у нас будет
При х = 2 у нас будет
Обычные задачи на производительность.
1. Производительность первого: 1/15 в час
Второго: 1/х в час, вместе: 1/6 в час
1/15+1/х=1/6
2/30+1/х=5/30
1/х=3/30=1/10
х=10,
ответ: 1/10 в час, или он сделает всю работу за 10 часов
2. Матроскин: 1/11, Шарик: 1/9, вместе: 1/х
1/11+1/9=1/х
9/99+11/99=1/х
20/99=1/х
х=99/20=4.95,
ответ: они вместе сделают работу за 4.95 дней
3. По той же схеме, но одна труба работает в минус, т.к. сливает воду
1/7-1/8=1/х
8/56-7/56=1/х
1/56=1/х
х=56,
ответ: бассейн будет наполнен за 56 часов