В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.
1) 9 - 2 · (-4х + 7) = 7
2 · (-4х + 7) = 9 - 7
2 · (-4х + 7) = 2
-4х + 7 = 2 : 2
-4х + 7 = 1
-4х = 1 - 7
-4х = -6
х = -6 : (-4)
х = 1,5
Проверка: 9 - 2 · (-4 · 1,5 + 7) = 7
9 - 2 · (-6 + 7) = 7
9 - 2 · 1 = 7
7 = 7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2) 9 + 10 · (3х - 10) = 2
10 · (3х - 10) = 2 - 9
10 · (3х - 10) = -7
3х - 10 = -7 : 10
3х - 10 = -0,7
3х = 10 - 0,7
3х = 9,3
х = 9,3 : 3
х = 3,1
Проверка: 9 + 10 · (3 · 3,1 - 10) = 2
9 + 10 · (-0,7) = 2
9 + (-7) = 2
2 = 2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3) 7 + 9 · (4х + 5) = -2
9 · (4х + 5) = -2 - 7
9 · (4х + 5) = -9
4х + 5 = -9 : 9
4х + 5 = -1
4х = -1 - 5
4х = -6
х = -6 : 4
х = -1,5
Проверка: 7 + 9 · (4 · (-1,5) + 5) = -2
7 + 9 · (-1) = -2
7 - 9 = -2
-2 = -2
х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5).
Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3.
S = (2+5)/2*3 =10,5.
Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6.
Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.