На множестве x={3,4,6,12,20} задано бинарное отношение p={(a,b), a, b э(перевернутая) x ! b^a} а) составьте матрицу для этого бинарного отношения. является ли р отношением эквивалентности или порядка (полного или частичного? строгого или б0 какова мощность множества 2^a * x , где a = { 5; 7}? выпиши любые 4 элемента этого множества
Количество клеток на доске 8×8 равно 64. Если удалить 1 клетку останется 63 клеток. Поэтому условие означает, что на доску 8×8 уложена 21 прямоугольников 1×3 (или 3×1).
Нам нужно вырезать клетку из доски 8×8 так, чтобы остаток можно было покрыть прямоугольников 1×3 (или 3×1).
Раскрасим доску 8×8 в 3 цвета вдоль главной диагонали так, чтобы любой прямоугольник занимал по клетке каждого цвета (см. рисунок-1). Клеток с номерами 1 – 22 штуки, с номером 2 – 21 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 1 (чтобы всех цветов осталось поровну). Такие клетки закрашены зелёным цветом (см. рисунок-2).
Раскрасим теперь доску в три цвета вдоль других диагоналей (см. рисунок-3). Клеток с номерами 1 – 21 штуки, с номером 2 – 22 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 2 (чтобы всех цветов осталось поровну). Такие клетки закрашены голубым цветом (см. рисунок-4).
Таким образом, мы можем вырезать одну из тех клеток, которая в первой раскраске имеют цвет 1, а во второй 2. Таких клеток только 4 (см. рисунок 5), которые закрашены красным цветом.
На рисунке-6 показан пример заполнения доски прямоугольниками 1×3 (или 3×1) с одной клеткой красного цвета. Примеры для остальных клеток можно получит поворотом доски.
Проведем радиус сферы в точку соприкосновения шара с цилиндром. Угол между этим радиусом и осью цилиндра (проходящего через центр сферы) обозначим как A. Радиус оснвания цилиндра равен = R sin A. расстояние от центра сферы до основания цилиндра = R cos A. высота цилиндра в два раза больше расстояния от центра сферы до основания цилиндра, т.е. = 2R cos A. Значит объем цилиндра равен V = pi (R sin A)^2 * 2R cosA = pi R^3 * sin^2 A * cos A. Найдем максимум путем дифферинцирования ф-ции объема. V' = pi R^3 ([1-cos^2 A] cos A)'. т.е. максимум достигается при sin^2 A = 2/3. Объем сферы = 4...