На одному альбомному аркуші можна розмістити 18 марок. Скіль- ки марок повинен мати Олег, щоб заповнити всі аркуші альбому, якщо в нього вміщується не більше, ніж 400 марок?
Полная поверхность шара радиусом R = 10 см равна S(ш) = 4Pi*R^2 = 4Pi*10^2 = 400Pi кв. см.При высверливании отверстия радиусом r = 6 см получаем: пропадают 2 шаровых сегмента высотой h = 2 см и добавляется внутренняя боковая поверхность цилиндра радиусом r = 6 см и высотой H = 16 см.Если ты нарисуешь шар с вырезанным цилиндром, то поймешь, что радиус цилиндра, половина его высоты и радиус шара составляют прямоугольный треугольник с катетом 6 см и гипотенузой 10 см.По т. Пифагора второй катет, то есть половина высоты цилиндра, равен 8 см. Значит, сегмент имеет высоту 2 см.Площадь шарового сегмента равна S(сег) = 2Pi*R*h = 2Pi*10*2 = 40Pi кв.см.Площадь боковой поверхности внутреннего цилиндраS(ц) = 2Pi*r*H = 2Pi*6*16 = 192Pi кв.см.Полная площадь поверхности равнаS = S(ш) - 2S(сег) + S(ц) = 400Pi - 80Pi + 192Pi = 512Pi кв.см.
Определим какой угол нужно найти. Так как MA - перпендикуляр, то MA перпендикярна AD, AD перпендикулярна AC, значит по теореме о трех перпендикулярах DM перпендикулярна AC. Значит надо найти угол MDA. Из прямоугольного треугольника ABC: AB = CD = 2, BC = AD = 2^(1/2) Тогда по теореме Пифагора AC^2 = AB^2 + BC^2 => AC^2 = 4 + 2 = 6 => AC = 6^(1/2) Из прямоугольного треугольника MAC: AC = 6^(1/2), MCA = 30 (угол между прямой МС и плоскостью ABCD равен углу между прямой МС и проекцией МС на плоскость, для этого проводим перпендикуляр, опущенный из точки М на плоскость, то есть МА, тогда проекцией будет АС, а угол между МС и АС, это и есть угол АСМ) tg MCA = MA/AC => MA = tg MCA * AC MA = tg 30 * 6^(1/2) = 3^(1/2)/3 * 6^(1/2) = 18^(1/2)/3 = 2^(1/2) Из прямоугольного треугольника MAD: AD = 2^(1/2), AM = 2^(1/2) tg MDA = MA/AD = 2^(1/2)/2^(1/2) = 1 Значит MDA = 45
Так как MA - перпендикуляр, то MA перпендикярна AD, AD перпендикулярна AC, значит по теореме о трех перпендикулярах DM перпендикулярна AC.
Значит надо найти угол MDA.
Из прямоугольного треугольника ABC:
AB = CD = 2, BC = AD = 2^(1/2)
Тогда по теореме Пифагора
AC^2 = AB^2 + BC^2 => AC^2 = 4 + 2 = 6 => AC = 6^(1/2)
Из прямоугольного треугольника MAC:
AC = 6^(1/2), MCA = 30 (угол между прямой МС и плоскостью ABCD равен углу между прямой МС и проекцией МС на плоскость, для этого проводим перпендикуляр, опущенный из точки М на плоскость, то есть МА, тогда проекцией будет АС, а угол между МС и АС, это и есть угол АСМ)
tg MCA = MA/AC => MA = tg MCA * AC
MA = tg 30 * 6^(1/2) = 3^(1/2)/3 * 6^(1/2) = 18^(1/2)/3 = 2^(1/2)
Из прямоугольного треугольника MAD:
AD = 2^(1/2), AM = 2^(1/2)
tg MDA = MA/AD = 2^(1/2)/2^(1/2) = 1
Значит MDA = 45