В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Hrachuk
Hrachuk
28.07.2020 09:52 •  Математика

На окружности отмечено 2020 точек. Лягушонок прыгает с одной отмеченной точки на другую, двигаясь по часовой стрелке. За один прыжок он может перепрыгнуть через 99 или через 100 отмеченных точек. Сможет ли лягушонок побывать во всех отмеченных точках ровно по одному разу и вернуться в ту же точку, с которой стартовал?

Показать ответ
Ответ:
Ондруй
Ондруй
15.10.2020 07:32

Пусть лягушонок стартует в точке x_{0}. Тогда, если какие-то две точки повторились, то лягушонок побывал также в точке x_{0} дважды, т.е. мы попали в цикл. Если мы покажем, что уравнение 100l+99k=2020m+r,\; 0\leq r\leq 2019 имеет решение при любом r, то цикл будет состоять из всех точек, и лягушонок побывает во всех точках по одному разу, а затем вернется в точку x_{0};

Докажем для начала, что если существует решение для остатков i,j, то существует решение для остатка i+j. Это вполне очевидно: просто сложим два уравнения для остатков i,j. Теперь, в частности, если существует решение для j=1, то существует решение для всех остатков. То есть нам надо решить диофантово уравнение 100x+99y-2020z=1; Для этого сразу положим z=1; Пусть y=21;

Тогда из числа 99\times 20=1980 нам нужно получить число 2021; Но мы умеем прибавлять единицу: 1=100-99. То есть 99\times 20 +(100-99)+...+(100-99)=100\times41+99\times (-21)-2020=1; Иными словами, получили решение x=41,\;y=-21,\;z=1, но нам нужно решение в натуральных числах. Не вопрос: добавим к y 2020, а к z добавим 99. Получим решение: x=41,\; y=1999,\; z=100.

Итак, план действий следующий.

Пусть мы находимся в точке x_{0}. Прыгаем 41 раз на 100 и 1999 раз на 99. Теперь мы в точке x_{0}+1. Таким образом, мы посетим все точки.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота