На острове рыцарей и лжецов 1000 посёлков. В каждом посёлке живут либо только рыцари, либо только лжецы. Некоторые посёлки соединены дорогами, при этом от любого посёлка можно добраться до любого другого. Жители каждого из посёлков сделали два утверждения:
От нашего посёлка ведут дороги хотя бы в три других посёлка.
От нашего посёлка ведут дороги хотя бы в два посёлка лжецов.
Какое наименьшее количество дорог может быть на острове?
Из тождественного равенства дробей на ОДЗ (x = 2, x = −3) при равных знаменателях
следует тождественное равенство числителей
a(x + 3) + b(x − 2) = 2 или (a + b)x + 3a − 2b = 2 =⇒ a + b = 0 и 3a − 2b = 2 =⇒
a = −b и −5b = 2 =⇒ b = −0, 4; a = 0, 4.
ответ. 0.
a3 − 3ab2 4b + a
Пример 2.3.11. Найдите значение дроби 2 b + 3b3
, если =2
4a 5a − 7b
4b + a
Решение. Из условия = 2 выразим a через b :
5a − 7b
4b + a = 10a − 14b =⇒ 9a = 18b =⇒ a = 2b.
8b3 − 6b3 2b3 2
Подставим a = 2b в исходную дробь : 3 + 3b3
= 3
= .
16b 19b 19
2
ответ. .
19
1) 70º, 80º, 100º, 110º.
2) 40º, 50º, 70º, 200º.
Пошаговое объяснение:
1) Дано отношение 7:8:10:11
Следовательно имеется
7+8+10+11=36 частей.
Сумма углов четырехугольника равна 360º.
1 часть=360º:36=10º
7*10º=70º - один угол,
8*10º=80º - второй угол,
10*10º=100º - третий угол,
11*10º=110º - четвертый угол.
Проверка:
70º+80º+100º+110º=360º
360º=360º
2) Дано отношение 4:5:7:20
Следовательно имеется
4+5+7+20=36 частей
Сумма углов четырехугольника равна 360º.
1 часть=360:36=10º
4*10º=40º - один угол,
5*10º=50º - второй угол,
7*10º=70º - третий угол,
20*10º=200º - четвертый угол.
Проверка:
40º+50º+70º+200º=360º
360º:=360º