На площині дано три точки: а, в, с. проведемо через точку а 5 прямих, через в- 3 прямих, через с7 прямих. причому у сукупності ці прямі є прямими загального положення, тобто жодні дві з них не паралельні і жодні три з них не перетинаються в одній точці (крім точок а, в, с), а також немає прямих, що проходять через дві з цих трьох точок. знайти кількість трикутників, вершини яких є точками перетину цих прямих і не збігаються з точками а, в, с.
1268
* 39
11412
3804
49452 49452|13
39 3804
___
104
104
___
05
0
52
52
__
0
3)3804*25=95100
3804
* 25
19020
7608
95100
х+2у=0 (нужно 《перенести》 в другую часть выражения, за знак равенства х: т.е. от обеих частей выражения (левой от знака равенства и правой) отнять х)
5х+у=-18 (нужно 《перенести》 5х...)
2у=-х (после этого нужно сделать, чтоб слева от знака равенства был только у, т.е. обе части равенства нужно делить на 2)
у=-5х-18
у=-х/2
у=-5х-18
Т. к. это линейная функция (прямая) (и первая, и вторая), то строить её можно только по двум произвольным точкам (больше и не надо, чтобы построить прямую).
Точки первой:
пусть х=2
у=-2/2=1
Так первая точка первой фунции (2;-1)
Аналогично можно найти произвольную вторую точку графика первой функции, пусть, например, (-2;1)
Произвольные точки графика второй функции тоже аналагично можно найти, просто подставив любое значение х и подсчитав:
(-3;-3), (-4;2)
Строишь по двум точкам график каждой функции и находишь точку пересечения (общую точку) по полученному графику этих двух прямых.
По графику точка пересечения: (-4;2).
ответ: (-4;2).
Я тебе в программе нарисовал белым цветом график первой функции (у=-х/2) и синим график второй (у=-5х-18) (просто в школе их надо ещё и подписывать). Поставь 《+》 в комментариях, если получил скриншот программы, если не сложно.