Задачу можно решить, не зная формулы выше, следующим
Всего существует комбинаций выбора 5-ти книг из 11 (здесь учитывается расположение каждой книги, поэтому числа получаются больше). , случаев, которые подходят по условию. Откуда получили вероятность .
Пошаговое объяснение:
Воспользуемся формулой числа сочетаний:
Тогда всего сочетаний:
Сочетаний, где хотя бы 4 книги - детективы:
Тогда ответом будет:
Задачу можно решить, не зная формулы выше, следующим
Всего существует комбинаций выбора 5-ти книг из 11 (здесь учитывается расположение каждой книги, поэтому числа получаются больше). , случаев, которые подходят по условию. Откуда получили вероятность .
Можно воспользоваться формулой числа размещения:
Откуда всего вариантов:
Вариантов, где хотя бы 4 книги - детективы:
Откуда искомая вероятность равна: