1) Раз производительность Р увеличилась на 60%, то теперь она составляет по сравнению с прежней 1,6Р. Производительность обратно пропорционально времени t, которое затрачивается на выполнение задания, следовательно время уменьшилось в 1,6 раза, т.е. теперь t составляет 1:1,6=0,625 или 62,5% от прежнего времени. Значит время сократилось на 100-62,5.
2) Есть двузначное число 10а+b. При перестановке цифр получаем другое двузначное число 10b+а, которое в 1,75 раз больше первого. Составим равенство 1,75(10а+b)=10b+a.
Если правильно сделаешь все преобразования 9подсказка - для удобства 1,75 представь как неправильную дробь), то получишь равенство 2а=b. Этому условию соответствуют следующие пары цифр 3 и 6, 4 и 8. Далее составляешь из них двузначные числа и находишь сумму.
3) Перед нами некая прогрессия, где следующий член получается прибавлением к предыдущему члену прогрессии числа 2*(n+1), где n - натуральное число. Т.о. следующим после 2 при n=1 будет 6, далее при n=2 будет 6+6=12. Девятым по счету будет число, являющееся суммой 2+(4+6+8+ и т.д. до 32). Посмотри формулы прогрессии сам(а).
4) среднее арифметическое есть сумма всех чисел, деленное на их общее количество. Чисел 12, следовательно их общая сумма равна 31*12= Далее к найденной общей сумме прибавляешь 5 и 43 и снова делишь, только теперь на 14.
Допустим, что нашлись числа a1, a2, ..., a1995, которые можно расставить требуемым образом. Пусть число ak (k = 1, 2, ..., 1995) представляется в виде произведения nk простых сомножителей (не обязательно различных). Так как каждые два соседние числа отличаются друг от друга одним простым множителем, то для каждого k = 1, 2, ..., 1994 числа nk и nk+1 отличаются на единицу, то есть имеют разную чётность. Значит, числа n1, n3, ..., n1995 должны быть одной чётности. С другой стороны, числа a1995 и a1 также соседние, поэтому n1995 и n1 должны иметь разную чётность. Противоречие.
2) Есть двузначное число 10а+b. При перестановке цифр получаем другое двузначное число 10b+а, которое в 1,75 раз больше первого.
Составим равенство 1,75(10а+b)=10b+a.
Если правильно сделаешь все преобразования 9подсказка - для удобства 1,75 представь как неправильную дробь), то получишь равенство 2а=b. Этому условию соответствуют следующие пары цифр 3 и 6, 4 и 8. Далее составляешь из них двузначные числа и находишь сумму.
3) Перед нами некая прогрессия, где следующий член получается прибавлением к предыдущему члену прогрессии числа 2*(n+1), где n - натуральное число. Т.о. следующим после 2 при n=1 будет 6, далее при n=2 будет 6+6=12. Девятым по счету будет число, являющееся суммой 2+(4+6+8+ и т.д. до 32). Посмотри формулы прогрессии сам(а).
4) среднее арифметическое есть сумма всех чисел, деленное на их общее количество. Чисел 12, следовательно их общая сумма равна 31*12= Далее к найденной общей сумме прибавляешь 5 и 43 и снова делишь, только теперь на 14.
Решение
Допустим, что нашлись числа a1, a2, ..., a1995, которые можно расставить требуемым образом. Пусть число ak (k = 1, 2, ..., 1995) представляется в виде произведения nk простых сомножителей (не обязательно различных). Так как каждые два соседние числа отличаются друг от друга одним простым множителем, то для каждого k = 1, 2, ..., 1994 числа nk и nk+1 отличаются на единицу, то есть имеют разную чётность. Значит, числа n1, n3, ..., n1995 должны быть одной чётности. С другой стороны, числа a1995 и a1 также соседние, поэтому n1995 и n1 должны иметь разную чётность. Противоречие.
ответ
Нельзя.