На прямой отметили две красные точки и несколько синих. Оказалось, что одна из красных точек содержится ровно в 88 отрезках с синими концами, а другая — в 90 отрезках с синими концами. Сколько синих точек отмечено?
Для того, чтобы находить и точки экстремума, и наибольшее с наименьшим необходимо работать с проихводной и с подстановкой значений крайних точек отрезка.
Ищем производную:
1) y' = 12/cos^2(x) - 12. Приравниваем ее к нулю для нахождения точек экстремума. (часто именно точки максимума и минимума могут быть наим и наиб значениями функции):
12/cos^2(x) - 12=0;
12/cos^2(x)=12;
cos^2(x)=1; (по правилу пропорции определить лёгко)
сosx = 1 или cosx=-1
x = 0 x = Пи
далее определям через занки производной возростание и убывание функции, по итогаам сих рассуждений получим: Пи - точка минимума. (значит, не подходит), а 0 - просто точка, через нее функция ни возрастает, ни убывает
2) находим значения функции на концах отрезка [-пи/4; пи/4]:
а) y(-Пи/4)= 12tg(-Пи/4) - 12(-Пи/4) + 3Пи - 13 = 12 + 6Пи - 13 = -1 (я не учел 6Пи - это оборот целый, он ничего не значит в данном случае и им можно пренебречь)
ответ: ==113545
1) 600100-576489=23611 2) 388582/97=4006 3)4006+23611=27617 4)27617+85928=113545
Пошаговое объяснение:
В начале скобки, потом умножение, деление и сложение, вычитание. В данном случае: скобки, деление, сложение. Прости, не могу фото
Для того, чтобы находить и точки экстремума, и наибольшее с наименьшим необходимо работать с проихводной и с подстановкой значений крайних точек отрезка.
Ищем производную:
1) y' = 12/cos^2(x) - 12. Приравниваем ее к нулю для нахождения точек экстремума. (часто именно точки максимума и минимума могут быть наим и наиб значениями функции):
12/cos^2(x) - 12=0;
12/cos^2(x)=12;
cos^2(x)=1; (по правилу пропорции определить лёгко)
сosx = 1 или cosx=-1
x = 0 x = Пи
далее определям через занки производной возростание и убывание функции, по итогаам сих рассуждений получим: Пи - точка минимума. (значит, не подходит), а 0 - просто точка, через нее функция ни возрастает, ни убывает
2) находим значения функции на концах отрезка [-пи/4; пи/4]:
а) y(-Пи/4)= 12tg(-Пи/4) - 12(-Пи/4) + 3Пи - 13 = 12 + 6Пи - 13 = -1 (я не учел 6Пи - это оборот целый, он ничего не значит в данном случае и им можно пренебречь)
б) y(Пи/4) = 12tg(Пи/4) - 12(Пи/4) + 3Пи - 13 = 12 - 6Пи + 3Пи - 13 = -Пи - 1 = -4,14 (приближенно)
Итог: у нас есть точки -4,14 и - 1. большая из них -1. Это и есть ответ.