На региональном соревновании команда из 10 спортсменов набрала Результат команды определялся как сумма её участников. Найдутся ли в этой команде хотя бы два спортсмена с одинаковым результатом, если любому спортсмену жюри могло поставить только натуральное число ?
Мне кажется (мне может и не правильно казаться) правильно (да)
Пошаговое объяснение:
среднее арифметическое = 45:10=4. - в среднем получил каждый спортсмен.
Значит, если поделить всех спортсменов на (10:2) 5 пар, то сумма каждой пары будет равна (4.5*2)
9=1+8
9=2+7
9=3+6
9=4+5
и наоборот (5+4; 6+3; 7+2; 8+1)
Всего получается 5 пар, а кол-во вариантов разбалловок в каждой паре 4 (если не считать обратные). Следовательно как минимум у двух пар будут одинаковые разбалловки (значит в этих парах будут два спортсмена с одинаковым кол-во ), что и требовалось доказать.
P.s. моё решение может быть неправильным или некорректно оформленным.