На рис. 1 изображены два одинаковых квадрата. Они разбивают плоскость на четыре части. На свободном поле справа, обозначенном как рис. 2, нарисуйте два квадрата так, чтобы они разбивали плоскость на десять частей.
1) Площадь квадрата равна квадрату его стороны. S = a²
2) Формула площади треугольника по стороне и высоте 1. Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты S = 2. Формула площади треугольника по трем сторонам Формула Герона S = √p(p - a)(p - b)(p - c)
3. Формула площади треугольника по двум сторонам и углу между ними Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними. S = a · b · sin γ
4. Формула площади треугольника по трем сторонам и радиусу описанной окружности S =
5.Формула площади треугольника по трем сторонам и радиусу вписанной окружности Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности. S = p · r
где S - площадь треугольника, a, b, c - длины сторон треугольника, h - высота треугольника, γ - угол между сторонами a и b, r - радиус вписанной окружности, R - радиус описанной окружности, p = a + b + c - полупериметр треугольника.
3) площадь параллелограмма 1. Формула площади параллелограмма по длине стороны и высоте Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты. S = a · h
2. Формула площади параллелограмма по двум сторонам и углу между ними Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними. S = a · b · sin α
где S - Площадь параллелограмма, a, b - длины сторон параллелограмма, h - длина высоты параллелограмма, α - угол между сторонами параллелограмма.
4) Следствие 1: Площадь прямоугольного треугольника равна половине произведения его катетов. Следствие 2: Если высоты двух треугольников равны ,то их площади относятся как основания. Воспользовавшись этим следствием докажем теорему об отношении площадей треугольников, имеющих по равному углу.
5) теорема об площади имеющие равные углы Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.
6) Площадь трапеции Площадь трапеции равна произведению полусуммы ее оснований на высоту: S = ((AD + BC) / 2) · BH, где высота трапеции — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.
7) Площадь ромба Площадь ромба равна половине произведения его диагоналей: S = (AC · BD) / 2.
8) теорема обратная теореме Пифагора Если в треугольнике со сторонами a, b и c выполняется равенство c² = a² + b² , то этот треугольник прямоугольный, причем прямой угол противолежит стороне c.
S = a²
2) Формула площади треугольника по стороне и высоте
1. Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
S =
2. Формула площади треугольника по трем сторонам
Формула Герона
S = √p(p - a)(p - b)(p - c)
3. Формула площади треугольника по двум сторонам и углу между ними
Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
S = a · b · sin γ
4. Формула площади треугольника по трем сторонам и радиусу описанной окружности
S =
5.Формула площади треугольника по трем сторонам и радиусу вписанной окружности
Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
S = p · r
где S - площадь треугольника,
a, b, c - длины сторон треугольника,
h - высота треугольника,
γ - угол между сторонами a и b,
r - радиус вписанной окружности,
R - радиус описанной окружности,
p = a + b + c - полупериметр треугольника.
3) площадь параллелограмма
1. Формула площади параллелограмма по длине стороны и высоте
Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.
S = a · h
2. Формула площади параллелограмма по двум сторонам и углу между ними
Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.
S = a · b · sin α
где S - Площадь параллелограмма,
a, b - длины сторон параллелограмма,
h - длина высоты параллелограмма,
α - угол между сторонами параллелограмма.
4) Следствие 1: Площадь прямоугольного треугольника равна половине произведения его катетов.
Следствие 2: Если высоты двух треугольников равны ,то их площади относятся как основания. Воспользовавшись этим следствием докажем теорему об отношении площадей треугольников, имеющих по равному углу.
5) теорема об площади имеющие равные углы
Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.
6) Площадь трапеции
Площадь трапеции равна произведению полусуммы ее оснований на высоту:
S = ((AD + BC) / 2) · BH,
где высота трапеции — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.
7) Площадь ромба
Площадь ромба равна половине произведения его диагоналей:
S = (AC · BD) / 2.
8) теорема обратная теореме Пифагора
Если в треугольнике со сторонами a, b и c выполняется равенство c² = a² + b² , то этот треугольник прямоугольный, причем прямой угол противолежит стороне c.
Пошаговое объяснение:
Пусть машин на первой стоянке изначально было х, а на второй стоянке 3х (потому что на первой стоянке было в 3 раза меньше машин)
Потом со второй стоянки на первую перевели 96 автомобилей и машин на стоянках стало поровну:
х+96=3х-96
Далее решим полученное уравнение:
х-3х=-96-96
-2х=192
х=96 - было на первой стоянке первоначально
Если на второй стоянке было в 3 раза больше машин, значит на второй стоянке было
3*96=288 машин
ответ: на первой стоянке первоначально было 96 машин, а на второй стоянке было 288 машин.