Пусть a1 чел. посещают только первый спецкурс, a2 чел. - только второй и a3 чел. - только третий. Пусть a12 чел. посещают первый и второй спецкурсы, a13 чел. - первый и третий и a23 чел. - второй и третий. По условию,
a1+a12+a13=90
a2+a12+a23=130
a3+a13+a23=60
a1+a2+a3=5*(a12+a13+a23)
Для решения полученной системы сложим первые три уравнения. После этого получим систему:
a1+a2+a3+2*(a12+a13+a23)=280
a1+a2+a3=5*(a12+a13+a23)
Отсюда 7*(a12+a13+a23)=280 и a12+a13+a23=40. Тогда a1+a2+a3=5*40=200 чел.
1) Уравнение стороны АВ:
, после сокращения на 10 получаем каноническое уравнение:
В общем виде х-у-3 = 0.
В виде уравнения с коэффициентом у = х-3.
2) уравнение высоты Ch.
(Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв).
Подставив координаты вершин, получаем:
х + у + 1 = 0, или
у = -х - 1.
3) уравнение медианы am.
(Х-Ха)/(Ха1-Ха ) = (У-Уа)/(Уа1-Уа).
Основание медианы Am (Ха1;Уа1)= ((Хв+Хс)/2; (Ув+Ус)/2) =
= ((9-5)/2=2; (6+4)/2=5) = (2;5).
Получаем уравнение Am:
Можно сократить на 3:
y = 3x - 1.
4) Точка n пересечения медианы Аm и высоты Ch.
Приравниваем y = 3x - 1 и у = -х - 1.
4х = 0,
х = 0, у = -1.
5) уравнение прямой, проходящей через вершину C параллельно стороне AB.
(Х-Хс)/( Хв-Ха) = (У-Ус)/(Ув-Уа).
х - у + 9 = 0,
у = х + 9.
6) расстояние от точки С до прямой АВ.
Это высота на сторону АВ.
h = 2S/AB.
Находим стороны треугольника:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √200 ≈ 14.14213562,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √200 ≈ 14.14213562,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √80 ≈ 8.94427191.
Площадь находим по формуле Герона:
S = 60.
h = 2*60/√200 = 8.485281.
ответ: 200 студентов.
Пошаговое объяснение:
Пусть a1 чел. посещают только первый спецкурс, a2 чел. - только второй и a3 чел. - только третий. Пусть a12 чел. посещают первый и второй спецкурсы, a13 чел. - первый и третий и a23 чел. - второй и третий. По условию,
a1+a12+a13=90
a2+a12+a23=130
a3+a13+a23=60
a1+a2+a3=5*(a12+a13+a23)
Для решения полученной системы сложим первые три уравнения. После этого получим систему:
a1+a2+a3+2*(a12+a13+a23)=280
a1+a2+a3=5*(a12+a13+a23)
Отсюда 7*(a12+a13+a23)=280 и a12+a13+a23=40. Тогда a1+a2+a3=5*40=200 чел.