Кратчайшее расстояние между скрещивающимися прямыми, диагональю куба и диагональю основания куба, это расстояние между одной из двух прямых и плоскостью, проходящей через другую прямую параллельно первой прямой.
Построим плоскость, проходящую через прямую BD параллельно прямой АС1.
Возьмем точку К - середину отрезка СС1, АС1 параллельна ОК ( т к ОК средняя линия в треугольнике АСС1).
По признаку параллельности прямой и плоскости АС1 параллельна плоскости BDK. Найдем расстояние между ними, оно рано расстоянию между параллельными прямыми АС1 и ОК. Опустим перпендикуляр ОН на АС1 и найдем его длину с треугольника АОС1.
Жил-был Квадрат. В его стране все было квадратным: дома, клумбы, часы. Даже блинчики, которые пекла его мама, были квадратными.Все друзья и соседи были одинаковые. Однажды Квадрат спросил у своей мамы: "Почему мы никогда не ходим в соседний город?"- "Там живут другие фигуры, они не такие, как мы!" - ответила мама.Квадрату стало очень любопытно. Неужели есть другие фигуры? Решил он отправиться в путешествие. И вот, Квадрат вошел в соседний город. И вдруг, он увидел, как прямо на него несется что-то непонятное. Квадрат зажмурил глаза.- "Привет, ты кто?" - вдруг услышал он. Он открыл глаза и увидел мальчика, у которого совсем не было углов.- "Я квадрат. Я из соседнего города. А ты кто?"- "А я - Круг".- "Как ты можешь двигаться так быстро?"- "Это я на велосипеде. Машина ездит еще быстрее!"- "А у нас нет ни машин, ни велосипедов".- "Конечно, ведь квадратные колеса не могут крутиться".
ответ: a/корень из 6
Пошаговое объяснение:
Кратчайшее расстояние между скрещивающимися прямыми, диагональю куба и диагональю основания куба, это расстояние между одной из двух прямых и плоскостью, проходящей через другую прямую параллельно первой прямой.
Построим плоскость, проходящую через прямую BD параллельно прямой АС1.
Возьмем точку К - середину отрезка СС1, АС1 параллельна ОК ( т к ОК средняя линия в треугольнике АСС1).
По признаку параллельности прямой и плоскости АС1 параллельна плоскости BDK. Найдем расстояние между ними, оно рано расстоянию между параллельными прямыми АС1 и ОК. Опустим перпендикуляр ОН на АС1 и найдем его длину с треугольника АОС1.