На рисунке изображён многоугольник A1A2A3A4A5A6A7A8. Найдите сумму расстояний: от вершины A3 до стороны A1A2, от вершины A4 до стороны A1A8, от вершины A6 до стороны A4A5. Размеры на рисунке указаны в сантиметрах НУЖНА ВАША
Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть
Итак, первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)
Пример 4. Точка движется прямолинейно по закону S(t)= 3t2-3t+8. Найти скорость и ускорение точки в момент t=4 c.
найдём скорость точки в любой момент времени t.
v=S’=(3t2-3t+8)’=6t-3.
Вычислим скорость в момент времени t=4 c.
v(4)=6∙4-3=21(м/с)
Найдём ускорение точки в любой момент времени t.
a= v’= (6t-3)’=6 и a(4)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.
ответ: v=21(м/с); a= v’= 6 (м/с2).
Пример 5. Тело массой 3 кг движется прямолинейно по закону S(t)=t3-3t2+5. Найти силу, действующую на тело в момент времени t=4 c.
Решение: сила, действующая на тело, находится по формуле F=ma.
Найдём скорость движения точки в любой момент времени t.
v=S’=(t3-3t2+5)’=3t2-6t.
Тогда v(4)=3∙42-6∙4=24 (м/с).
Найдём ускорение: a(t)=v’=(3t2-6t)’=6t-6.
Тогда a(4)= 6∙4-6= 18 (м/с2).
F=ma=3∙18= 54 Н
ответ: F= 54 Н
Разбор решения заданий тренировочного модуля
№ 1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте
Напишите производную третьего порядка для функции:
ответ: 1) f(x)= sin 2x
f'(x)=cos 2x∙(2x)’= 2cos 2x
f (x)=-2sin2x∙(2x)’=-4sin 2x
f'''(x)= -4 cos 2x∙(2x)= -8 cos 2x
f(4)(x)= 8 sin2x∙(2x)’= 16 sin 2x
2) f(x)=23x
f’(x)=3∙ 23x ∙ln2
f (x)= 9∙ 23x ∙ln22
f'''(x)= 27∙ 23x ∙ln32
f(4)(x)= 81∙ 23x ∙ln42
Механический смысл второй производной.
Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть
Итак, первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)
Пример 4. Точка движется прямолинейно по закону S(t)= 3t2-3t+8. Найти скорость и ускорение точки в момент t=4 c.
найдём скорость точки в любой момент времени t.
v=S’=(3t2-3t+8)’=6t-3.
Вычислим скорость в момент времени t=4 c.
v(4)=6∙4-3=21(м/с)
Найдём ускорение точки в любой момент времени t.
a= v’= (6t-3)’=6 и a(4)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.
ответ: v=21(м/с); a= v’= 6 (м/с2).
Пример 5. Тело массой 3 кг движется прямолинейно по закону S(t)=t3-3t2+5. Найти силу, действующую на тело в момент времени t=4 c.
Решение: сила, действующая на тело, находится по формуле F=ma.
Найдём скорость движения точки в любой момент времени t.
v=S’=(t3-3t2+5)’=3t2-6t.
Тогда v(4)=3∙42-6∙4=24 (м/с).
Найдём ускорение: a(t)=v’=(3t2-6t)’=6t-6.
Тогда a(4)= 6∙4-6= 18 (м/с2).
F=ma=3∙18= 54 Н
ответ: F= 54 Н
Разбор решения заданий тренировочного модуля
№ 1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте
Напишите производную третьего порядка для функции:
f(x)= 3cos4x-5x3+3x2-8
Решим данную задачу:
f’’’(x)=( 3cos4x-5x3+3x2-8)’’’=(((3cos4x-5x3+3x2-8)’)’)’=((-12sin4x-15x2+6x)’)’=(-48cos4x-30x)’=192sin4x-30.
ответ: 192sin4x-30
№ 2. Тип задания: выделение цветом
Точка движется прямолинейно по закону S(t)= 3t2+2t-7. Найти скорость и ускорение точки в момент t=6 c.
v=38 м/с; a=6 м/с2
v=38 м/с; a=5 м/с2
v=32 м/с; a=6 м/с2
v=32 м/с; a=5 м/с2
Решим данную задачу:
Воспользуемся механическим смыслом второй производ
Пошаговое объяснение:
1)(x-3)(3x+2)=(5x-4)(3x-2)
x*3x+2x-3*3x-6=5x*3x-5x*2-4*3x+8
3x^2+2x-9x-6=15x^2-10x-12x+8
3x^2-15x^2-7x-6=-22x+8
-12x^2+15x+14=0
12x^2-15x-14=0
2)(2x+7)(7-2x)=49+x·(x+2)
7*2x-2x*2x+7*7-7*2x=49+x^2+2*x
14x-4x^2+49-14x=49+x^2+2x
-4x^2+49-49=x^2+2x
x^2+2x=-4x^2
x^2+4x^2+2x=0
5x^2+2x=0, где с=0
3)3x-2\2x+1=2x+3\2x-1
(2x-1)(3x-2)-(2x+1)(2x+3)=0
2x*3x-2x*2-1*3x+2-2x*2x-3*2x+2x+3=0
6x^2-4x-3x+2-4x^2-6x+2x+3=0
6x^2-4x^2-7x-6x+2x+2+3=0
2x^2-11x+5=0
4)x-1\x+3+5x-4\4x+1=1
(4x+1)(x-1)+(x+3)(5x-4)=(x+3)(4x+1)
4x*x-4x+x-1+5x*x-4x+3*5x-3*4=x*4x+x+3*4x+3
4x^2-3x-1+5x^2-4x+15x-12=4x^2+x+12x+3
x^2: 4x^2+5x^2-4x^2
x:-3x-4x+15x-12x-x
x^0:-1-12-3
5x^2-5x-16=0