Пошаговое объяснение:
log(2x-5)(x+1)=1/(log(x+1)(2x-5)
ОДЗ; 2x-5>0; x>2.5
x+1>0; x>-1
x+1≠1; x≠0
2x-5≠1; x≠3
Общее ОДЗ: x=(2.5;3)U(3;+∞)
теперь к неравенству, обозначу log(x+1)(2x-5)=t
t+1/t≤2
(t^2-2t+1)/t=(t-1)^2/t<=0
рассмотрим два случая
а)так как числитель положителен, то t<0
log(x+1)(2x-5)<0
т.к по одз x>2.5, основание логарифма >1
2x-5<(x+1)^0
2x-5<1
2x<6
x<3
2)когда числитель дроби равен 0, t-1=0;t=1
log(x+1)(2x-5)=t=1
2x-5=(x+1)^1
2x-5=x+1
x=6
Учитывая одз общий ответ x=(2.5;3)U{6}
Пошаговое объяснение:
log(2x-5)(x+1)=1/(log(x+1)(2x-5)
ОДЗ; 2x-5>0; x>2.5
x+1>0; x>-1
x+1≠1; x≠0
2x-5≠1; x≠3
Общее ОДЗ: x=(2.5;3)U(3;+∞)
теперь к неравенству, обозначу log(x+1)(2x-5)=t
t+1/t≤2
(t^2-2t+1)/t=(t-1)^2/t<=0
рассмотрим два случая
а)так как числитель положителен, то t<0
log(x+1)(2x-5)<0
т.к по одз x>2.5, основание логарифма >1
2x-5<(x+1)^0
2x-5<1
2x<6
x<3
2)когда числитель дроби равен 0, t-1=0;t=1
log(x+1)(2x-5)=t=1
2x-5=(x+1)^1
2x-5=x+1
x=6
Учитывая одз общий ответ x=(2.5;3)U{6}
2-х-√х+10=0
2-х=√х+10
(2-х)²=(√х+10)²
4-2х+х²=х+10
х²-3х-6=0
Д=в²-4ас=9-4·1·(-6)=9+24=33
Х1=3-√33/2 , Х2= 3+√33/2
Проверка:
Х1=3-√33/2,-явл.т.к (3-√33/2)²-3(3-√33)/2-6=0,(9-6√33+33)/4 -3·2(3-√33)/4-6=
=(9-6√33+33-18+6√33)/4-6=24/4-6=6-6=0,0=0
Х2=3+√33/2-явл. т.к. (3+√33/2)²-3(3+√33)/2-6=(9+6√33+33-18-6√33)/4-6=24/4-6
=6-6=0,0=0
ответ: 3-√33/2;3+√33/2
2)
х²-х+√х²-х-2=8
Пусть :х²-х=у
у+√у-2=8
у-8=√у-2
(у-8)²=(√у-2)²
у²-16у+64=у-2
у²-17у+66=0
У1+У2=17
У1·У2=66
У1=11,У2=6
х²-х=У1
х²-х=11
х²-х-11=0
Х1=(1-3√5)/2, Х2=(1+3√5)/2
Проверка:
Х1=(1-3√5)/2, -не явл. корнем т.к. при подстановки в данное уравнение, получим:14≠8
Х2=(1+3√5)/2-не явл корнем, т.к. 14≠8
У2= 6
х²-х=6
х²-х-6=0
Х3=-2
Х4=3
Проверка:
х=3- явл. корнем,т.к 3²-3+√3²-3-2=6+√4=6+2=8, 8=8
х=-2-явл. корнем,т.к (-2)²+2+√(-2)²+2-2=6+√4=6+2=8, 8=8
ответ: -2;3.