[ ] На рисунке ОВ=10, ОА= 8√2 . Луч ОА составляет с отрицательным направлением оси Ох угол в 45°. a). Найдите координаты точки А; б). Найдите длину отрезка АВ, если В(8;6).
Рассмотрим каждое неравенство: 1) x2+64<0 x2<-64 Квадрат любого числа является числом положительным, следовательно, ни при каких x x2 не может быть меньше отрицательного числа. Поэтому данное неравенство не имеет решений. 2) x2+64>0 x2>-64 Как говорилось ранее, x2 - число положительное, следовательно, для любого x это неравенство верно. Т.е. решение данного неравенства x⊂(-∞;+∞) 3) x2-64>0 x2>64 Очевидно, что найдутся такие x, что x2>64 (например x=100). Следовательно, данное неравенство имеет решения. 4) x2-64<0 x2<64 Очевидно, что найдутся такие x, что x2<64 (например x=1). Следовательно, данное неравенство имеет решения. ответ: 1)
1) x2+64<0
x2<-64
Квадрат любого числа является числом положительным, следовательно, ни при каких x x2 не может быть меньше отрицательного числа. Поэтому данное неравенство не имеет решений.
2) x2+64>0
x2>-64
Как говорилось ранее, x2 - число положительное, следовательно, для любого x это неравенство верно. Т.е. решение данного неравенства x⊂(-∞;+∞)
3) x2-64>0
x2>64
Очевидно, что найдутся такие x, что x2>64 (например x=100). Следовательно, данное неравенство имеет решения.
4) x2-64<0
x2<64
Очевидно, что найдутся такие x, что x2<64 (например x=1). Следовательно, данное неравенство имеет решения.
ответ: 1)