Натуральные числа - это числа, которые используются для счёта предметов (1, 2, 3 ...). n - первое натуральное число n + 1 - второе натуральное число n + 2 - третье натуральное число n + 3 - четвёртое натуральное число Уравнение: (n + 2) * (n + 3) - n * (n + 1) = 58 n^2 + 2n + 3n + 6 - n^2 - n = 58 (n^2 - n^2) + (2n + 3n - n) + 6 = 58 4n + 6 = 58 4n = 58 - 6 4n = 52 n = 52 : 4 = 13 - первое число 13 + 1 = 14 - второе число 13 + 2 = 15 - третье число 13 + 3 = 16 - четвёртое число ответ: 13, 14, 15, 16.
Если нужное нам число дает остаток 23 по делении 75 и 80, то число, которое получается при вычитании 23 из нужного нам, делится нацело и на 75, и на 80.
Найдем НОК чисел 75 и 80 (1 фото).
НОК (75; 80)= 1200.
Теперь найдем наибольшее кратное числа 1200 среди 4-ёхзначных чисел. Для этого 9999 разделим на 1200 с остатком, а потом умножим целую часть кратного на 1200 (2 фото).
Получаем 9600. Это самое большое 4-ёхзначное число, которое делится и на 75, и на 80. А значит самое большое 4-ёхзначное число, которое делится и на 75, и на 80 с остатком 23 это:
n - первое натуральное число
n + 1 - второе натуральное число
n + 2 - третье натуральное число
n + 3 - четвёртое натуральное число
Уравнение:
(n + 2) * (n + 3) - n * (n + 1) = 58
n^2 + 2n + 3n + 6 - n^2 - n = 58
(n^2 - n^2) + (2n + 3n - n) + 6 = 58
4n + 6 = 58
4n = 58 - 6
4n = 52
n = 52 : 4 = 13 - первое число
13 + 1 = 14 - второе число
13 + 2 = 15 - третье число
13 + 3 = 16 - четвёртое число
ответ: 13, 14, 15, 16.
Проверка: 15 * 16 - 13 * 14 = 58
240 - 182 = 58
58 = 58
Здравствуйте!
9623
Пошаговое объяснение:
Если нужное нам число дает остаток 23 по делении 75 и 80, то число, которое получается при вычитании 23 из нужного нам, делится нацело и на 75, и на 80.
Найдем НОК чисел 75 и 80 (1 фото).
НОК (75; 80)= 1200.
Теперь найдем наибольшее кратное числа 1200 среди 4-ёхзначных чисел. Для этого 9999 разделим на 1200 с остатком, а потом умножим целую часть кратного на 1200 (2 фото).
Получаем 9600. Это самое большое 4-ёхзначное число, которое делится и на 75, и на 80. А значит самое большое 4-ёхзначное число, которое делится и на 75, и на 80 с остатком 23 это:
9600+23=9623.