На складе находилось 20 ящиков яблок, причем в 12 ящиках были яблоки зеленого цвета и в 8 ящиках красного.наудачу взяли 7 ящиков и отвезли в магазин на продажу.какова вероятность того, что в 4 ящиках яблоки зеленого цвета. (использовать формулы комбинаторики)
Пошаговое объяснение:
1) определим уравнение касательной проведенной к графику данной функции в точке с абциссой x₀=2 по формуле y=y₀+y'(x₀)(x-x₀)
y₀=y(2)=2*2-2²=4-4=0 ; y'=2-2x ; y'(2)=2-4=-2
y=-2(x-2)=-2x+4 ; y=-2x+4
2) найдем точки пересечения графиков y=-2x+4 и y=2x-x²
-2x+4=2x-x²
x²-2x+4-2x=0
x²-4x+4=0
(x-2)²=0
x=2
(2;0)
3) найдем точки пересечения графика y=2x-x² с ОХ
y=2x-x²=0
х(2-х)=0
x₁=0 ; x₂=2
4) найдем точкy пересечения графика y=-2x+4 с ОУ
х=0 ; y=-2x+4=-2*0+4=4
(0;4)
5) схематически построим графики y=-2x+4 и y=2x-x²
6) площадь фигуры ограниченной линиями y=2x-x^2 и касательной проведенной к графику данной функции в точке с абциссой x=2 и с осью ординат
S=SΔOAB-SкриволинейногоΔOCB=
2 2 2
= (OA*OB/2)-∫(2x-x²)dx=(4*2/2)-[(2x²/2)-(x³/3)]=4-[x²-(x³/3)]=
0 0 0
=4-[2²-(2³/3)]=4-[4-(8/3)]=4-4+8/3=8/3=2 2/3
Рассмотрим сложенный из дощечкек квадрат на листочке в клеточку и увидим, что:
а - большая сторона параллелограмма,
а - основание маленького треугольника,
а - боковое ребро среднего треугольника
2а - основание большого треугольника,
b - меньшая сторона параллелограмма,
b - сторона маленького квадрата,
b - сторона маленького треугольника,
2b - основание среднего треугольника
2b - боковое ребро большого треугольника.
Посчитаем периметры отдельных фигур:
1) периметр большого треугольника:
2а + 2b + 2b = 2a + 4b
2) периметр среднего треугольника:
а + а + 2b = 2a + 2b
3) периметр маленького треугольника:
b + b + a = 2b + a
4) периметр маленького квадрата:
4b
5) периметр параллелограмма:
2а + 2b.
Теперь рассмотрим сложную фигуру.
Итак:
1) слева внизу большой треугольник, из периметра которого надо исключить меньшую сторону параллелограмма:
2а + 4b - b = 2a + 3b
2) на основании большого треугольника расположены параллелограмм, из которого имеют значение только две стороны а и b, и маленький треугольник, из которого имеет значение только боковая сторона b
a + b + b = a + 2b
3) из маленького квадрата в центре фигуры имеет значение только две стороны b:
Но поскольку заданная сложная фигура симметрична, несмотря на то, что ее левая и правая стороны сложены из разных фигур, мы можем учесть только одну сторону маленького квадрата b, найти периметр половины сложной фигуры и умножить на 2.
Найдем периметр сложной фигуры:
1) 2а + 3b + a + 2b + b = 3a + 6b = 3(a + 2b) - полупериметр сложной фигуры.
2) 2 • 3(a + 2b) = 6(a + 2b) или 6а + 12b
ответ: 6(a + 2b) или 6а + 12b.