В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
эрика86
эрика86
27.09.2020 23:29 •  Математика

На сторонах и треугольника С выбраны точки и
соответственно так, что ∥ и =. Вычислите длину отрезка , если =28 =20 ВС=3

Показать ответ
Ответ:
Ania07
Ania07
18.05.2023 15:46

Пошаговое объяснение:

( 275 + 80 ÷ y) ÷ 4 = 70

275+80 : у= 70 * 4

275 +80 : у= 280

80 : у= 280 - 275

80 : у= 5

у= 80 : 5

у= 16

2500мм >  25 см     ( 1000 мм= 10 см)

2400 кг <  240 ц     (1ц= 100кг)

6т 8кг  < 6080 кг    (1т = 1000 кг)

5) 12- 4= 8 см ширина

Периметр прямоугольника равен: Р=2(a+b)= 2*(12+8)=40 см

Площадь прямоугольника равна: S=a*b = 12* 8= 96 см²

Найдем сторону квадрата, такой же периметр, что и периметр прямоугольника Р= 4а    а= Р/4= 40/4= 10 см

площадь квадрата: S= a² =10²= 100 см²

0,0(0 оценок)
Ответ:
Zylfia221
Zylfia221
08.04.2021 05:32

y=e⁻²ˣ+e²ˣ-2·x³-3·x

Пошаговое объяснение:

Дано линейное уравнение и начальные условия:

y''-4·y=8·x³, y(0)=2, y'(0)=-3

1) Сначала решаем линейное однородное уравнение

y''-4·y=0

Для этого составим и решим характеристическое уравнение:

λ²-4=0 ⇔ (λ+2)(λ-2)=0 ⇔ λ₁ = -2, λ₂ = 2

Получены два различных действительных корня, поэтому общее решение однородного уравнения:

y=C₁·e⁻²ˣ+C₂·e²ˣ

2) Теперь найдём частное решение y₁ неоднородного уравнения

y''-4·y=8·x³

Так как правая часть уравнения многочлен 8·x³, то будем искать в виде

y₁=A·x³+B·x²+C·x+D

Найдём первую и вторую производную:

y₁'=(A·x³+B·x²+C·x+D)=3·A·x²+2·B·x+C

y₁''=(3·A·x²+2·B·x+C)'=6·A·x+2·B

Подставим y₁ и y₁'' в левую часть неоднородного уравнения:

6·A·x+2·B-4·(A·x³+B·x²+C·x+D)=8·x³

Раскрываем скобки и упростим:

-4·A·x³-4·B·x²+(6·A-4·C)·x+2·B-4·D=8·x³

Приравниваем коэффициенты при соответствующих степенях и составим систему линейных уравнений и решаем:

-4·A=8 ⇒ A = -2

-4·B=0 ⇒ B = 0

6·A-4·C=0 ⇒ 4·C = 6·A ⇒ 4·C = 6·(-2) ⇒ 4·C = -12 ⇒ C = -3

2·B-4·D=0 ⇒ 4·D=2·B ⇒ 4·D=2·0 ⇒ D = 0

Получили частное решение

y₁= -2·x³-3·x

3) Тогда получим следующее общее решение

y=C₁·e⁻²ˣ+C₂·e²ˣ-2·x³-3·x

4) Применим начальные условия:

y(0)=C₁·e⁰+C₂·e⁰-2·0³-3·0=2 ⇒ C₁+C₂=2

y'=(C₁·e⁻²ˣ+C₂·e²ˣ-2·x³-3·x)'= -2·C₁·e⁻²ˣ+2·C₁·e²ˣ - 6·x²-3

y'(0)= -2·C₁·e⁰+2·C₂·e⁰ - 6·0²-3 = -3 ⇒ -2·C₁+2·C₂ - 3=-3 ⇒ C₁ -C₂ =0 ⇒ C₁=C₂

Получили систему линейных уравнений и решаем:

C₁ = C₂ =1

C₁ + C₂ =2 ⇒  C₂ + C₂ =2 ⇒ 2· C₂ =2 ⇒  C₂ =1

5) Подставляя C₁ и C₂ в общее решение получим

y=e⁻²ˣ+e²ˣ-2·x³-3·x

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота