На сторонах вс и cd квадрата abcd взяли точки k и m так, что угол mak равен 45градусов. известно, что km=13 ,kc = 5 ,cm=12 . найдите сторону квадрата abcd
Определим центр вневписанной окружности ΔCMK, которая касается MK. Центр вневписанной окружности в треугольник лежит на пересечении биссектрисы внутреннего угла, противолежащего стороне касания, и биссектрис двух внешних углов, прилежащих к стороне касания.
Пусть центр это т. О, тогда KO - биссектриса ∠BKM; BO - биссектриса ∠DMK; OC - биссектриса ∠BCM.
Сумма внутренних углов треугольника равна 180°.
В ΔMKO:
∠MOK = 180°-(∠OMK+∠OKM)
Биссектриса делит угол пополам.
∠MOK = 180°-(∠DMK:2 + ∠BKM:2);
∠MOK = 180°-(∠DMK+∠BKM):2.
Внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
Для ΔCMK:
∠BKM = ∠KMC+∠KCM;
∠DMK = ∠MKC+∠MCK.
Тогда получим:
∠MOK = 180°-(∠MKC+∠MCK + ∠KMC+∠KCM):2;
∠MOK = 180°-(180°+90°):2;
∠MOK = 180°-270°:2 = 180°-135°;
∠MOK = 45°.
Диагонали квадрата делят угол пополам.
Для квадрата ABCD:
CA - биссектриса ∠BCD.
Заметим, что ∠MAK = 45° = ∠MOK и CA совпадает с CO, тогда т. А совпадает с т. О.
По определению вневписанная окружность касается продолжений CM и CK. Тогда радиус равен расстоянию от A до CM, то есть стороне квадрата. Значит окружность содержит точки D и B. CD и CB - касательные к вневписанной окружности.
Пусть P точка касания со стороной MK.
Отрезки касательных проведённых из одной точки к одной окружности равны.
Условие: На сторонах ВС и CD квадрата ABCD взяли точки K и M так, что ∠MAK = 45°. Известно, что KM = 13 ,KC = 5 ,CM = 12. Найдите сторону квадрата ABCD.
Дано: K ∈ BC, M ∈ CD, ∠MAK = 45°, KM = 13 ,KC = 5 ,CM = 12.
Найти: BC.
Осуществим поворот ΔAMD на 90° против часовой стрелки ⇒ ΔAMD переходит в ΔAM₁B, ΔAMD = ΔAM₁B.
Из равенства ΔAMD = ΔAM₁B следует, что ∠MAD = ∠BAM₁, значит, ∠BAK + ∠BAM₁ = 45°.
ΔMAK = ΔM₁AK по двум сторонам и углу между ними:
AM = AM₁ - так как ΔAMD = ΔAM₁BАК - общая сторона∠MAK = ∠M₁AK = 45°
Отсюда следует, что ∠АКМ = АКМ₁.
Аналогичным образом, осуществив поворот ΔAВК на 90° по часовой стрелке, можно утверждать, что ∠AMK = ∠AMD.
Заметим, что биссектрисы АК и АМ внешних углов при вершинах К и М ΔКСМ пересекаются в точке А, то есть точка А является центром вневписанной окружности ΔКСМ ⇒ AB = AD = AH - радиусы вневписанной окружности.
КВ = КН, MD = MH - как отрезки касательных
BC + СD = (BK + CK) + (CM + MD) = (KH + CK) + (CM + MH) = CK + CM + (KH + MH) = CK + CM + MK = 5 + 12 + 13 = 30
Определим центр вневписанной окружности ΔCMK, которая касается MK. Центр вневписанной окружности в треугольник лежит на пересечении биссектрисы внутреннего угла, противолежащего стороне касания, и биссектрис двух внешних углов, прилежащих к стороне касания.
Пусть центр это т. О, тогда KO - биссектриса ∠BKM; BO - биссектриса ∠DMK; OC - биссектриса ∠BCM.
Сумма внутренних углов треугольника равна 180°.В ΔMKO:
∠MOK = 180°-(∠OMK+∠OKM)
Биссектриса делит угол пополам.∠MOK = 180°-(∠DMK:2 + ∠BKM:2);
∠MOK = 180°-(∠DMK+∠BKM):2.
Внешний угол треугольника равен сумме двух внутренних, не смежных с ним.Для ΔCMK:
∠BKM = ∠KMC+∠KCM;
∠DMK = ∠MKC+∠MCK.
Тогда получим:
∠MOK = 180°-(∠MKC+∠MCK + ∠KMC+∠KCM):2;
∠MOK = 180°-(180°+90°):2;
∠MOK = 180°-270°:2 = 180°-135°;
∠MOK = 45°.
Диагонали квадрата делят угол пополам.Для квадрата ABCD:
CA - биссектриса ∠BCD.
Заметим, что ∠MAK = 45° = ∠MOK и CA совпадает с CO, тогда т. А совпадает с т. О.
По определению вневписанная окружность касается продолжений CM и CK. Тогда радиус равен расстоянию от A до CM, то есть стороне квадрата. Значит окружность содержит точки D и B. CD и CB - касательные к вневписанной окружности.
Пусть P точка касания со стороной MK.
Отрезки касательных проведённых из одной точки к одной окружности равны.Поэтому MD=MP и KP=KB.
PΔCMK = CM+MK+CK;
CM+MP+PK+CK = 12+13+5;
CM+BD+CK+KM = 30;
2·CD = 30;
CD = 30:2 = 15.
ответ: 15.
Условие: На сторонах ВС и CD квадрата ABCD взяли точки K и M так, что ∠MAK = 45°. Известно, что KM = 13 ,KC = 5 ,CM = 12. Найдите сторону квадрата ABCD.
Дано: K ∈ BC, M ∈ CD, ∠MAK = 45°, KM = 13 ,KC = 5 ,CM = 12.
Найти: BC.
Осуществим поворот ΔAMD на 90° против часовой стрелки ⇒ ΔAMD переходит в ΔAM₁B, ΔAMD = ΔAM₁B.
∠BAD = ∠BAK + ∠MAK + ∠MAD = 90° ⇒ ∠BAK + ∠MAD = 90° - ∠MAK = 90° - 45° = 45°
Из равенства ΔAMD = ΔAM₁B следует, что ∠MAD = ∠BAM₁, значит, ∠BAK + ∠BAM₁ = 45°.
ΔMAK = ΔM₁AK по двум сторонам и углу между ними:
AM = AM₁ - так как ΔAMD = ΔAM₁BАК - общая сторона∠MAK = ∠M₁AK = 45°Отсюда следует, что ∠АКМ = АКМ₁.
Аналогичным образом, осуществив поворот ΔAВК на 90° по часовой стрелке, можно утверждать, что ∠AMK = ∠AMD.
Заметим, что биссектрисы АК и АМ внешних углов при вершинах К и М ΔКСМ пересекаются в точке А, то есть точка А является центром вневписанной окружности ΔКСМ ⇒ AB = AD = AH - радиусы вневписанной окружности.
КВ = КН, MD = MH - как отрезки касательныхBC + СD = (BK + CK) + (CM + MD) = (KH + CK) + (CM + MH) = CK + CM + (KH + MH) = CK + CM + MK = 5 + 12 + 13 = 30
BC + СD = 30 ⇒ BC + BC = 30 ⇒ BC = 15
ответ: 15.