На заправку привезли 3200 / бензина. До обеда продали часть бензина, а после обеда . Сколько литров бензина продали до обеда и после? Сколько литров бензина осталось на заправке
( что бы перевести смешанную дробь в неправильную надо: целую часть умножить на знаменатель и прибавить числитель: 5*10=50+3=53 это записываем в числитель, а знаменатель остается без изм)
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.Для линейного графа раскрасим вершины через одну, и возьмём тот цвет, представителей которого не меньше. Это даст как минимум половину. Если цикл имеет чётную длину, то мы также выбираем половину -- через одного. Наконец, пусть цикл имеет длину 2k+1, где k>=2. Тогда можно взять k человек с номерами 2, 4, ... , 2k. Доля числа взятых равна k/(2k+1)>=2/5. Отсюда следует, что мы можем взять как минимум 2/5 от общего числа, а это и есть 12. Они попарно знакомы.
17/5=3 2/5
(решение 17:5 , до 17 на 5 без остатка делитс 15 ,15:5=3,это целая часть. 17-15=2остаток записываем в числитель ,знаменатель остается без изм)
20/7= 2 6/7 (14:7=2 целых, 20-14=6 числитель, 7 знаменатель)
43/10=4 3/10 (43:10=4 целых остаток 3-числитель, 10-знамен)
5 3/10=53/10
( что бы перевести смешанную дробь в неправильную надо: целую часть умножить на знаменатель и прибавить числитель: 5*10=50+3=53 это записываем в числитель, а знаменатель остается без изм)
60/11=5 5/11 (60:11=5 целых остаток 5-числитель,11-знаменатель)
9 1/5=46/5 (9*5=45+1=46 это числитель,5-знаменатель)
1 2/3= 5/3 (1*3+2=5-числитель,3-знаменатель)
3 3/4=15/4 (3*4+3=15-чслитель 4 знамен) вроде
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.
Из условия следует, что ни у кого нет троих не знакомых с ним, а также то, что нет тройки попарно незнакомых. В противном случае к ним добавляем каких-то двоих, и этих пятерых будет не рассадить.Рассмотрим дополнение графа знакомств в полном графе -- это удобно, так как рёбер мало. Степень каждой вершины не больше 2, и в графе нет треугольников. Рассмотрим связную компоненту. Это или линейный граф (возможно, из одной вершины), или цикл. Будем в каждой компоненте выбирать подмножество вершин, в котором нет соединений. Если мы в сумме наберём 12 человек, то задача решена: представители разных компонент между собой знакомы.Для линейного графа раскрасим вершины через одну, и возьмём тот цвет, представителей которого не меньше. Это даст как минимум половину. Если цикл имеет чётную длину, то мы также выбираем половину -- через одного. Наконец, пусть цикл имеет длину 2k+1, где k>=2. Тогда можно взять k человек с номерами 2, 4, ... , 2k. Доля числа взятых равна k/(2k+1)>=2/5. Отсюда следует, что мы можем взять как минимум 2/5 от общего числа, а это и есть 12. Они попарно знакомы.