Начерти прямоутольный треугольник со сторонами 4,5 см , 6 см и 7,5 см , а также опи- санную около hero окружность измерь радиус описанной окружности вычисли площадь той части крута , которая лежит вне треугольника и ограничена описанной около треугольника окружностью . ответ окрута и до десятых .
Школьники собрали всего 2100 кг картофеля, причем до обеда было собрано в 2 раза больше, чем после обеда. Сколько килограммов картофеля собрали школьники после обеда?
В условие задачи входят величины: масса картофеля, собранного до обеда, масса картофеля, собранного после обеда, общая масса собранного картофеля.
Масса картофеля, собранного после обеда, меньше. Ее и принимают за х. Тогда масса картофеля, собранного до обеда, равна 2х кг.
2100 – сумма величин, так как в первой фразе говорится, что всего собрали 2100 кг. Задача на суммирование, составляется уравнение: 2х + х = 2100. Упростив, получим: 3х = 2100, где х = 700. Так как через х обозначили массу, собранную после обеда, то мы ответили на поставленный в задаче вопрос.
ответ: 700 кг картофеля собрали после обеда.
Все дроби, равные \dfrac45
5
4
, имеют вид \dfrac{4k}{5k}
5k
4k
, где k - целое и k≠0.
По условию 43 < 4k < 63, найдём k, а затем и сами дроби.
\begin{gathered}\dfrac{43}4
При k=11:
\dfrac{4k}{5k} =\dfrac{4\cdot 11}{5\cdot 11} =\dfrac{44}{55}
5k
4k
=
5⋅11
4⋅11
=
55
44
При k=12:
\dfrac{4k}{5k} =\dfrac{4\cdot 12}{5\cdot 12} =\dfrac{48}{60}
5k
4k
=
5⋅12
4⋅12
=
60
48
При k=13:
\dfrac{4k}{5k} =\dfrac{4\cdot 13}{5\cdot 13} =\dfrac{52}{65}
5k
4k
=
5⋅13
4⋅13
=
65
52
При k=14:
\dfrac{4k}{5k} =\dfrac{4\cdot 14}{5\cdot 14} =\dfrac{56}{70}
5k
4k
=
5⋅14
4⋅14
=
70
56
При k=15:
\dfrac{4k}{5k} =\dfrac{4\cdot 15}{5\cdot 15} =\dfrac{60}{75}
5k
4k
=
5⋅15
4⋅15
=
75
60
ответ: 44/55; 48/60; 52/65; 56/70 и 60/75.