1) Раз производительность Р увеличилась на 60%, то теперь она составляет по сравнению с прежней 1,6Р. Производительность обратно пропорционально времени t, которое затрачивается на выполнение задания, следовательно время уменьшилось в 1,6 раза, т.е. теперь t составляет 1:1,6=0,625 или 62,5% от прежнего времени. Значит время сократилось на 100-62,5.
2) Есть двузначное число 10а+b. При перестановке цифр получаем другое двузначное число 10b+а, которое в 1,75 раз больше первого. Составим равенство 1,75(10а+b)=10b+a.
Если правильно сделаешь все преобразования 9подсказка - для удобства 1,75 представь как неправильную дробь), то получишь равенство 2а=b. Этому условию соответствуют следующие пары цифр 3 и 6, 4 и 8. Далее составляешь из них двузначные числа и находишь сумму.
3) Перед нами некая прогрессия, где следующий член получается прибавлением к предыдущему члену прогрессии числа 2*(n+1), где n - натуральное число. Т.о. следующим после 2 при n=1 будет 6, далее при n=2 будет 6+6=12. Девятым по счету будет число, являющееся суммой 2+(4+6+8+ и т.д. до 32). Посмотри формулы прогрессии сам(а).
4) среднее арифметическое есть сумма всех чисел, деленное на их общее количество. Чисел 12, следовательно их общая сумма равна 31*12= Далее к найденной общей сумме прибавляешь 5 и 43 и снова делишь, только теперь на 14.
Решение делим на две части: I. доказываем монотонный прирост и ограниченность II. находим предел последовательности
Часть I: монотонность доказываем по индукции: Проверка: Предполагаем справедливость неравенства для любого Доказываем для :
Монотонный прирост доказан.
Ограниченность сверху:
Условие выполняется для , по индукции получаем справедливость для любого . (, потому можно извлечь корень) (*) Последовательность монотонна и ограниченна, следовательно сходится к супремуму.
Часть II. Определим . Из (*) следует: , но для больших выполняется (Коши), следовательно Подставялем в рекурсию и получаем:
Из монотонности и следует . Получаем:
(**) Как я "угадал" верхний предел для доказательства ограниченности в первой части? - Сначала решил часть II, и выбрал подходящее значение. Важно помнить: без части I, часть II не имеет сысла!! Потому доказательство нужно предоставлять именно в таком порядке и в полном объёме.
2) Есть двузначное число 10а+b. При перестановке цифр получаем другое двузначное число 10b+а, которое в 1,75 раз больше первого.
Составим равенство 1,75(10а+b)=10b+a.
Если правильно сделаешь все преобразования 9подсказка - для удобства 1,75 представь как неправильную дробь), то получишь равенство 2а=b. Этому условию соответствуют следующие пары цифр 3 и 6, 4 и 8. Далее составляешь из них двузначные числа и находишь сумму.
3) Перед нами некая прогрессия, где следующий член получается прибавлением к предыдущему члену прогрессии числа 2*(n+1), где n - натуральное число. Т.о. следующим после 2 при n=1 будет 6, далее при n=2 будет 6+6=12. Девятым по счету будет число, являющееся суммой 2+(4+6+8+ и т.д. до 32). Посмотри формулы прогрессии сам(а).
4) среднее арифметическое есть сумма всех чисел, деленное на их общее количество. Чисел 12, следовательно их общая сумма равна 31*12= Далее к найденной общей сумме прибавляешь 5 и 43 и снова делишь, только теперь на 14.
I. доказываем монотонный прирост и ограниченность
II. находим предел последовательности
Часть I:
монотонность доказываем по индукции:
Проверка:
Предполагаем справедливость неравенства для любого
Доказываем для :
Монотонный прирост доказан.
Ограниченность сверху:
Условие выполняется для , по индукции получаем справедливость для любого .
(, потому можно извлечь корень)
(*) Последовательность монотонна и ограниченна, следовательно сходится к супремуму.
Часть II.
Определим . Из (*) следует:
, но для больших выполняется (Коши), следовательно
Подставялем в рекурсию и получаем:
Из монотонности и следует .
Получаем:
(**) Как я "угадал" верхний предел для доказательства ограниченности в первой части?
- Сначала решил часть II, и выбрал подходящее значение.
Важно помнить: без части I, часть II не имеет сысла!! Потому доказательство нужно предоставлять именно в таком порядке и в полном объёме.