Задание 1. Всего количество чисел от 10 до 60 - 60-9=51. Среди них, количество чисел, делящихся на 4 равно 13 (12;16;20;24;28;32;36;40;44;48;52;56;60)
Искомая вероятность : P=13/51 ≈ 0.25
Задание 2. Выбрать один белый шар можно а два черных шара - По правилу произведения, вынуть один белый шар и два черных шара можно кол-во благоприятных событий)
Количество все возможных событий:
Искомая вероятность:
Задание 3. Выбрать одного мужчину можно а трёх женщин - И тогда выбрать делегацию из четырёх человек(1 мужчина и 3 женщин) можно
Количество все возможных событий:
Искомая вероятность
Задание 4. Число испытаний: n=3, вероятность успеха - 0,8, вероятность неудачи - q=1-0.8=0.2. Искомая вероятность по формуле Бернулли:
Задание 5.
Задание 6. В таблице вероятности сумма вероятностей должна равняться 1, то есть
При расчётах подобных примеров нужно соблюдать определённый порядок действий, который предполагает выполнение правил: если выражение содержит скобки, то действия в скобках выполняются в первую очередь, если в скобках присутствуют действия двух ступеней (складывание\вычитание — первая ступень и умножение\деление — вторая ступень), то в первую очередь выполняются действия второй ступени, а во вторую - действия первой ступени. а) 2*11*5*5*4=22*5*5*4=110*5*4=550*4=2200; б) 35*28+15*28=28(35+15)=28*50=1400 (для данного примера можно вынести за скобки общий множитель “28”); в) (100-5)*16=95*16=1520.
Искомая вероятность : P=13/51 ≈ 0.25
Задание 2. Выбрать один белый шар можно а два черных шара - По правилу произведения, вынуть один белый шар и два черных шара можно кол-во благоприятных событий)
Количество все возможных событий:
Искомая вероятность:
Задание 3. Выбрать одного мужчину можно а трёх женщин - И тогда выбрать делегацию из четырёх человек(1 мужчина и 3 женщин) можно
Количество все возможных событий:
Искомая вероятность
Задание 4. Число испытаний: n=3, вероятность успеха - 0,8, вероятность неудачи - q=1-0.8=0.2. Искомая вероятность по формуле Бернулли:
Задание 5.
Задание 6. В таблице вероятности сумма вероятностей должна равняться 1, то есть
Вычислим математическое ожидание по определению
Дисперсия:
Среднее квадратическое отклонение σ(x).
а) 2*11*5*5*4=22*5*5*4=110*5*4=550*4=2200;
б) 35*28+15*28=28(35+15)=28*50=1400 (для данного примера можно вынести за скобки общий множитель “28”);
в) (100-5)*16=95*16=1520.