Начертите шестиугольник и обозначте его вершины. проведите две диагонали из разных вершин шестиугольника. измерьте величину большого угла шестиугольника. измерьте величину большого угла между дипгоналями шестиугольника
Десятичной дробью называют обыкновенную дробь, знаменателем которой является единица с последующими нулями. Такие дроби обычно записывают без знаменателя, а значение каждой цифры зависит от места, на котором она стоит. ... Цифры дробной части называются десятичными знаками.
объяснение:
Причём последовательность цифр до запятой (слева от неё) конечна (как минимум одна цифра), а после запятой (справа от неё) — может быть как конечной (в частности, цифры после запятой могут вообще отсутствовать), так и бесконечной.
Дробную часть десятичной дроби разбивают на разряды так: десятые (в знаменателе обыкновенной дроби 10), сотые (в знаменателе обыкновенной дроби 100), тысячные (в знаменателе обыкновенной дроби 1000) и т. д. Таблицу разрядов можно дополнить любым нужным количеством столбцов
1. ∠ABD = ∠ACD = 90° по условию,
∠DAB = ∠DAC по условию,
DA - общая сторона для треугольников DAB и DAC, ⇒
ΔDAB = ΔDAC по гипотенузе и острому углу.
2. ∠BDA = ∠BDC = 180° : 2 = 90°, так как эти углы смежные.
∠BAD = ∠BCD по условию,
сторона BD - общая для треугольников BAD и BDC, ⇒
ΔBAD = ΔBCD по катету и противолежащему острому углу.
3. ∠ABE = ∠DCE = 90°
∠CED = ∠BEA как вертикальные,
ED = EA по условию, ⇒
ΔABE = ΔDCE по гипотенузе и острому углу.
∠ABD = ∠DCA = 90°,
∠EAD = ∠EDA как углы при основании равнобедренного треугольника EAD,
AD - общая сторона для треугольников ABD и DCA, ⇒
ΔABD = ΔDCA по гипотенузе и острому углу.
4. АВ = 2ВС = 2 · 4 = 8, так как катет, лежащий напротив угла в 30°, равен половине гипотенузы.
5. Сумма острых углов прямоугольного треугольника равна 90°. Тогда
∠А = 90° - ∠В = 90° - 60° = 30°.
ВС - катет, лежащий напротив угла в 30°, ⇒
ВС = АВ/2 = 10/2 = 5
6. ∠А = 90° - ∠В = 90° - 45° = 45°, значит ΔАВС равнобедренный,
ВС = АС = 6
7. Прямоугольный треугольник с углом 45° - равнобедренный (доказано в задаче 6), значит высота CD является биссектрисой и медианой.
∠ACD = ∠BCD = 90°/2 = 45°,
тогда и ΔCDB равнобедренный, DB = CD = 8.
AD = DB = 8 (так как CD и медиана), ⇒AB = 16
8. ∠СВЕ = 90° - 60° = 30°
В ΔСВЕ напротив угла в 30° лежит катет ЕС = 7, значит
гипотенуза ВЕ = 2ЕС = 2 · 7 = 14.
∠АВЕ = 60° - ∠ВАЕ = 60° - 30° = 30°, так как внешний угол треугольника (∠ВЕС) равен сумме двух внутренних, на смежных с ним.
Тогда ΔАВЕ равнобедренный, АЕ = ВЕ = 14.
9. Так как ΔАВС равнобедренный, ∠ВАС = ∠ВСА,
∠АЕС = ∠CDA = 90°,
АС - общая сторона для треугольников АЕС и CDA, ⇒
ΔАЕС = ΔCDA по гипотенузе и острому углу.
Значит AD = CE.
Пошаговое объяснение:
Десятичной дробью называют обыкновенную дробь, знаменателем которой является единица с последующими нулями. Такие дроби обычно записывают без знаменателя, а значение каждой цифры зависит от места, на котором она стоит. ... Цифры дробной части называются десятичными знаками.
объяснение:
Причём последовательность цифр до запятой (слева от неё) конечна (как минимум одна цифра), а после запятой (справа от неё) — может быть как конечной (в частности, цифры после запятой могут вообще отсутствовать), так и бесконечной.
Дробную часть десятичной дроби разбивают на разряды так: десятые (в знаменателе обыкновенной дроби 10), сотые (в знаменателе обыкновенной дроби 100), тысячные (в знаменателе обыкновенной дроби 1000) и т. д. Таблицу разрядов можно дополнить любым нужным количеством столбцов