Предложим, что основание равнобедренного треугольника = 7 см, значит, боковые стороны равны (из определения равнобедренного треугольника "Равнобедренный треуголник - это треугольник, у которого боковые стороеы равны"), найдем их.19 - 7 = 12 см. 12:2 = 6 см.
Вспомним "Неравенство треугольников". Каждая сторона треугольника меньше суммы двух других сторон. Возьмем треугольник АВС, например (прикреплен к ответу). Проверяем.
AB < AC+BC AC > AB+BC ВС < AB+AC
6 см < 13 см 7 см < 12 см 6 см < 13 см
Мы доказали, что такой треугольник существует.
ответ: основание = 7 см, боковые стороны = по 6 см каждая.
Предложим, что основание равнобедренного треугольника = 7 см, значит, боковые стороны равны (из определения равнобедренного треугольника "Равнобедренный треуголник - это треугольник, у которого боковые стороеы равны"), найдем их.19 - 7 = 12 см. 12:2 = 6 см.
Вспомним "Неравенство треугольников". Каждая сторона треугольника меньше суммы двух других сторон. Возьмем треугольник АВС, например (прикреплен к ответу). Проверяем.
AB < AC+BC AC > AB+BC ВС < AB+AC
6 см < 13 см 7 см < 12 см 6 см < 13 см
Мы доказали, что такой треугольник существует.
ответ: основание = 7 см, боковые стороны = по 6 см каждая.
ответ:М (1).
Пошаговое объяснение:
Найдём расстояние между точками А и В на координатной прямой.
Расстояние АО от точки А до нулевой координаты составит 1,5 единицы, расстояние ОВ от нулевой координаты до точки В - 6 единиц.
Длина отрезка АВ = АО + ОВ = 1,5 + 6 = 7,5 единиц.
АМ : МВ = 1 : 2 - то есть, расстояние от точки А до точки М вдвое меньше расстояния от точки М до точки В.
2 * АМ = ВМ, поэтому правомерно равенство АМ + 2 * АМ = АВ.
В численном выражении 3 * АМ = 7,5, тогда АМ = 2,5 единицы.
Определим координату точки М.
Расстояние от начала координат до точки М равно
ОМ = 2,5 - АО = 2,5 - 1,5 = 1.