Для знаходження кута між висотою конуса і його твірною нам знадобиться використати теорему Піфагора.
Площа бічної поверхні конуса обчислюється за формулою: S = πrl, де r - радіус основи конуса, l - твірна конуса.
Ми знаємо, що площа бічної поверхні дорівнює 6√3 см^2.
6√3 = πrl
Також нам відомо, що висота конуса дорівнює √3 см.
Застосуємо теорему Піфагора для знаходження радіусу r:
r^2 + (√3)^2 = l^2
r^2 + 3 = l^2
Підставимо значення l^2 з другого рівняння в перше:
6√3 = πr√(r^2 + 3)
Після спрощення ми отримаємо:
36π^2(r^2 + 3) = 108r^2
36π^2r^2 + 108π^2 = 108r^2
(36π^2 - 108)r^2 = -108π^2
r^2 = (108π^2) / (108 - 36π^2)
r^2 = π^2 / (1 - π^2/3)
r^2 = π^2 / (3 - π^2)
r = √(π^2 / (3 - π^2))
Тепер, знаючи радіус r і висоту h, можемо знайти твірну l за до теореми Піфагора:
l^2 = r^2 + h^2
l^2 = (√(π^2 / (3 - π^2)))^2 + (√3)^2
l^2 = π^2 / (3 - π^2) + 3
l^2 = (π^2 + 3(3 - π^2)) / (3 - π^2)
l^2 = (9 - 2π^2) / (3 - π^2)
Тепер ми можемо знайти тангенс кута α між висотою і твірною конуса:
tan(α) = h / l
tan(α) = √3 / √((9 - 2π^2) / (3 - π^2))
tan(α) = (√3 * √(3 - π^2)) / √(9 - 2π^2)
Отже, кут між висотою конуса і його твірною дорівнює:
α = arctan((√3 * √(3 - π^2)) / √(9 - 2π^2)
Пошаговое объяснение:
Давайте розв'яжемо цю систему рівнянь:
1) Почнемо з першого рівняння: 2(x + y) = 30.
Розкриємо дужки: 2x + 2y = 30.
2) Тепер перейдемо до другого рівняння: 3(x - y) = 30.
Розкриємо дужки: 3x - 3y = 30.
Тепер ми маємо систему двох лінійних рівнянь:
2x + 2y = 30,
3x - 3y = 30.
3) Застосуємо метод елімінації змінних, щоб вирішити цю систему.
Множимо перше рівняння на 3 і друге рівняння на 2, отримуємо:
6x + 6y = 90,
6x - 6y = 60.
4) Просумуємо ці два рівняння:
(6x + 6y) + (6x - 6y) = 90 + 60,
12x = 150.
5) Розділимо обидві частини на 12:
x = 150 / 12,
x = 12.5.
6) Підставимо значення x у будь-яке з початкових рівнянь для знаходження y. Візьмемо перше рівняння:
2(12.5 + y) = 30.
Розкриємо дужки: 25 + 2y = 30.
Віднімемо 25 від обох боків:
2y = 30 - 25,
2y = 5.
Розділимо обидві частини на 2:
y = 5 / 2,
y = 2.5.
Таким чином, розв'язок системи рівнянь 2(x + y) = 30 і 3(x - y) = 30 є x = 12.5 і y = 2.5.
Для знаходження кута між висотою конуса і його твірною нам знадобиться використати теорему Піфагора.
Площа бічної поверхні конуса обчислюється за формулою: S = πrl, де r - радіус основи конуса, l - твірна конуса.
Ми знаємо, що площа бічної поверхні дорівнює 6√3 см^2.
6√3 = πrl
Також нам відомо, що висота конуса дорівнює √3 см.
Застосуємо теорему Піфагора для знаходження радіусу r:
r^2 + (√3)^2 = l^2
r^2 + 3 = l^2
Підставимо значення l^2 з другого рівняння в перше:
6√3 = πr√(r^2 + 3)
Після спрощення ми отримаємо:
36π^2(r^2 + 3) = 108r^2
36π^2r^2 + 108π^2 = 108r^2
(36π^2 - 108)r^2 = -108π^2
r^2 = (108π^2) / (108 - 36π^2)
r^2 = π^2 / (1 - π^2/3)
r^2 = π^2 / (3 - π^2)
r = √(π^2 / (3 - π^2))
Тепер, знаючи радіус r і висоту h, можемо знайти твірну l за до теореми Піфагора:
l^2 = r^2 + h^2
l^2 = (√(π^2 / (3 - π^2)))^2 + (√3)^2
l^2 = π^2 / (3 - π^2) + 3
l^2 = (π^2 + 3(3 - π^2)) / (3 - π^2)
l^2 = (9 - 2π^2) / (3 - π^2)
Тепер ми можемо знайти тангенс кута α між висотою і твірною конуса:
tan(α) = h / l
tan(α) = √3 / √((9 - 2π^2) / (3 - π^2))
tan(α) = (√3 * √(3 - π^2)) / √(9 - 2π^2)
Отже, кут між висотою конуса і його твірною дорівнює:
α = arctan((√3 * √(3 - π^2)) / √(9 - 2π^2)
Пошаговое объяснение:
Давайте розв'яжемо цю систему рівнянь:
1) Почнемо з першого рівняння: 2(x + y) = 30.
Розкриємо дужки: 2x + 2y = 30.
2) Тепер перейдемо до другого рівняння: 3(x - y) = 30.
Розкриємо дужки: 3x - 3y = 30.
Тепер ми маємо систему двох лінійних рівнянь:
2x + 2y = 30,
3x - 3y = 30.
3) Застосуємо метод елімінації змінних, щоб вирішити цю систему.
Множимо перше рівняння на 3 і друге рівняння на 2, отримуємо:
6x + 6y = 90,
6x - 6y = 60.
4) Просумуємо ці два рівняння:
(6x + 6y) + (6x - 6y) = 90 + 60,
12x = 150.
5) Розділимо обидві частини на 12:
x = 150 / 12,
x = 12.5.
6) Підставимо значення x у будь-яке з початкових рівнянь для знаходження y. Візьмемо перше рівняння:
2(12.5 + y) = 30.
Розкриємо дужки: 25 + 2y = 30.
Віднімемо 25 від обох боків:
2y = 30 - 25,
2y = 5.
Розділимо обидві частини на 2:
y = 5 / 2,
y = 2.5.
Таким чином, розв'язок системи рівнянь 2(x + y) = 30 і 3(x - y) = 30 є x = 12.5 і y = 2.5.