Пошаговое объяснение:
y=x²−6x+a это парабола ветвями вверх
у нас есть минимальное значение функции у = 1
мы пойдем путем, обратным пути поиска экстремума функции.
найдем, в какой точке достигается минимум (а минимум достигается в точке х0, где производная функции равна 0)
y'(x) = 2x -6 2x-6 = 0 ⇒ x = 3
таким образом вершина нашей параболы (ее минимум) достигается в точке (3; 1), т.е. парабола проходит через эту точку. отсюда найдем а
у(3) = 3²−6*3+a = 1 ⇒ а = 10
таким образом мы восстановили уравнение
у = x²−6x+10
тогда точка пересечения с осью ординат (0; 10) , а ее ордината
у = 10
Пошаговое объяснение:
y=x²−6x+a это парабола ветвями вверх
у нас есть минимальное значение функции у = 1
мы пойдем путем, обратным пути поиска экстремума функции.
найдем, в какой точке достигается минимум (а минимум достигается в точке х0, где производная функции равна 0)
y'(x) = 2x -6 2x-6 = 0 ⇒ x = 3
таким образом вершина нашей параболы (ее минимум) достигается в точке (3; 1), т.е. парабола проходит через эту точку. отсюда найдем а
у(3) = 3²−6*3+a = 1 ⇒ а = 10
таким образом мы восстановили уравнение
у = x²−6x+10
тогда точка пересечения с осью ординат (0; 10) , а ее ордината
у = 10