Написать именно условие 35 из летописи известно, что зимой 401 года чёрное море покрылось льдом такое явление повторилось через 610 лет,а потом ещё через 609 лет
Пусть х км/ч - скорость течения реки, тогда (20 + х) км/ч - скорость лодки по течению реки, (20 - х) км/ч - скорость лодки против течения реки. Уравнение:
Пусть ABCM - данная пирамида, О - центр правильного треугольника, тогда
OM=3, угол AHС=120 градусов
Н - точка такая, что AH перпендикулярно HB
(по формуле)
синус угол наклона бокового ребра к плоскости основания=
произведению ctg(180\n)*котангенс половины двугранного угла при основании
sin угол OAM=ctg(180\3)*ctg(угол BHA\2)
sin угол OAM=ctg 60*ctg 60=1\3
С прямоугольного треугольника OAM
sin угол OAM=OM\AM
AM=1\3*3=1
OA=корень(3^2-1^2)=2*корень(2)=R
Vk=1\3*pi*R^2*h
Vk=2\3*pi*8*3=16*pi
ответ:16*pi
Пусть х км/ч - скорость течения реки, тогда (20 + х) км/ч - скорость лодки по течению реки, (20 - х) км/ч - скорость лодки против течения реки. Уравнение:
18/(20+х) + 20/(20-х) = 2
20 · (20 + х) + 18 · (20 - х) = 2 · (20 + х) · (20 - х)
400 + 20х + 360 - 18х = 2 · (20² - х²)
760 + 2х = 800 - 2х²
760 + 2х - 800 + 2х² = 0
2х² + 2х - 40 = 0
х² + х - 20 = 0
D = b² - 4ac = 1² - 4 · 1 · (-20) = 1 + 80 = 81
√D = √81 = 9
х₁ = (-1-9)/(2·1) = (-10)/2 = -5 (не подходит, так как < 0)
х₂ = (-1+9)/(2·1) = 8/2 = 4
ответ: 4 км/ч - скорость течения реки.
Проверка:
18/(20+4) + 20/(20-4) = 0,75 + 1,25 = 2 ч - время движения