Требуется найти степень десятки, на которую делится нацело данное произведение. Каждый множитель входящий в данное произведение (ну единицу можно не считать), можно разложить в произведение простых множителей. Затем подсчитать общее количество простого множителя = 5, (степень пятерки). Ведь 10=5*2. Двойки тоже можно подсчитать таким же образом, но их очевидно намного больше. Поэтому искомая степень десяти равно степени пятерки. Теперь считаем, для начала выпишем все целые числа от 1 до 30, делящиеся на 5: 5; 10; 15; 20; 25; 30. Степень пятерки, на которую делятся эти числа могут быть не только единичной. Выпишем для каждого приведенного числа степень пятерки, на которую оно делится. Для 5, будет 5 в первой степени. Для 10, будет 5 в первой степени. -- 15 -- 5-- ---20 -- 5--- ---25 --- 5 во второй степени (т.е. 5^2). ---30 -- 5 в первой степени. Теперь сосчитаем все эти пятерки: 1+1+1+1+2+1 = 7. Т.о. данное в условие произведение делится на 5^7 (и не делится на большую степень пятерки). Степень же двойки будет намного больше (числа делящиеся на 2 и степени двойки встречаются гораздо чаще), поэтому среди них обязательно найдется 2^7. ответ. 7 нулей.
Тут поработали эволюционные процессы, такие, как дивергенция вследствие изоляции или других причин. Если вид разделить хотя бы территориально и каждую часть его поместить в отличные друг от друга условия, через несколько поколений появятся заметные изменения в обеих группах. Имею место также мутационные процессы, естественный отбор, дрейф генов, всевозможные адаптации и тд. Особей одного рода можно считать представителями разных видов, если у них будет пред- и посткопулятивная изоляция (то есть не спариваться друг с другом) . Как-то так...
Каждый множитель входящий в данное произведение (ну единицу можно не считать), можно разложить в произведение простых множителей.
Затем подсчитать общее количество простого множителя = 5, (степень пятерки). Ведь 10=5*2. Двойки тоже можно подсчитать таким же образом, но их очевидно намного больше. Поэтому искомая степень десяти равно степени пятерки.
Теперь считаем, для начала выпишем все целые числа от 1 до 30, делящиеся на 5:
5; 10; 15; 20; 25; 30.
Степень пятерки, на которую делятся эти числа могут быть не только единичной. Выпишем для каждого приведенного числа степень пятерки, на которую оно делится.
Для 5, будет 5 в первой степени.
Для 10, будет 5 в первой степени.
-- 15 -- 5--
---20 -- 5---
---25 --- 5 во второй степени (т.е. 5^2).
---30 -- 5 в первой степени.
Теперь сосчитаем все эти пятерки: 1+1+1+1+2+1 = 7.
Т.о. данное в условие произведение делится на 5^7 (и не делится на большую степень пятерки). Степень же двойки будет намного больше (числа делящиеся на 2 и степени двойки встречаются гораздо чаще), поэтому среди них обязательно найдется 2^7.
ответ. 7 нулей.