В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Кувшин13
Кувшин13
28.04.2021 00:23 •  Математика

Написать уравнение касательной к графику функции y=1/x^2 в точке с абсциссой x₀=1 правильный ответ объяснить как в таких решать.

Показать ответ
Ответ:
xomidov
xomidov
24.05.2020 07:55

функция y=1/x^2

ее производная y'=(1/x^2)'=(x^(-2))'=-2*x^(-2-1)=-2x^(-3)=-2/x^3


значение функции в точке x0=1

y(x0)=y(1)=1/1^2=1


значение производной в точке х0=1

y'(x0)=y'(1)=-2/1^3=-2


уравнение касательной в точке х0=1

y=y'(x0)(x-x0)+y(x0)

y=-2(x-1)+1=-2x+2+1=-2x+3

y=-2x+3


Алгоритм:

Вычислить производную функции. y'(x)

Вычислить значение функции и производной в заданной точке: y(x0) и y'(x0)

Подставить найденные значения в уравнение касательной y=y'(x0)(x-x0)+y(x0)

и найти уравнение.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота