Все три крана наполняют бассейн 1/8 + 1/12 + 1/20 его объема за час: или 15/120 + 10/120 + 6/120 = 31/120 в час, значит за 2 часа заполнилось: 2х31/120 = 62/120 объема бассейна., затем на час открыли выходное отверстие, все краны, при этом, были открыты: 62/120 + 31/120 - 1/30 = 93/120 - 4/120 = 89/120 - осталось через 3 часа. После закрытия 1-го и 2-го кранов бассейн заполнял только 3-й кран и работал слив, т.е. осталось заполнить 120/120 - 89/120 = 31/120. 1/20 - 1/30 = 1/60 (объема в час) - с такой скоростью стал заполняться бассейн, теперь найдем время, за которое он заполнился: 31/120 / 1/60 = 15,5 часов.
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
62/120 + 31/120 - 1/30 = 93/120 - 4/120 = 89/120 - осталось через 3 часа. После закрытия 1-го и 2-го кранов бассейн заполнял только 3-й кран и работал слив, т.е. осталось заполнить 120/120 - 89/120 = 31/120.
1/20 - 1/30 = 1/60 (объема в час) - с такой скоростью стал заполняться бассейн, теперь найдем время, за которое он заполнился: 31/120 / 1/60 = 15,5 часов.