X^2 + 10x + 106 = 0, d/4 = 5^2 - 106 = 25 - 106< 0. y = x^2 + 10x + 106 это парабола с ветвями, направленными вверх. найдем вершину параболы. y = x^2 + 10x + 106 = x^2 + 2*5*x + 25 + 81 = (x+5)^2 + 81. вершина параболы находится в точке x=-5; y = 81. это минимум. т.к. функция квадратного корня - это строго возрастающая функция, то большему значению аргумента соответствует большее значение функции, а меньшему значению аргумента соответствует меньшее значение функции. поэтому минимум у функции y = √(x^2 + 10x + 106), находится в той же самой точке x=-5 и y(-5) = √81 = 9. ответ. 9.
В 1-ой коробке Х карандашей, тогда во 2-ой коробке 3Х карандашей, а в 3 -ей коробке
3Х/2 или 1,5Х.
Т.к. всего карандашей 165, составим уравнение: Х+3Х+1,5Х=165
5,5Х=165
Х= 30; 3Х=90; 1,5Х=45
ответ: 45 карандашей лежит в 3-ей коробке.