а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
Мама коза убрала скатерть,а первый козлёнок сделал из неё 4 салфетки. 1 скатерть = 4 салфетки,обозначим это а₁=4, Каждый следующий козлёнок брал 1 салфетку,а возвращал в сундук 4, 4-1=3 -то есть прибавлял 3 салфетки в сундук,на одну меньше,чем первый козлёнок,обозначим это а₂=а₁-1=3, Все следующие козлята,а их было 6-ть, так же брали 1 салфетку,а возвращали 4,то есть шестеро козлят добавили по 3 салфетки каждый,отсюда получаем а₂ * 6 = 3 * 6=18 -обозначим это d=а₂* 6, Составим выражение,где а₇ -это общее количество получившихся салфеток: а₇=а₁+ d =а₁+а₂ * 6=4 + 3*6=4+18 = 22-салфетки,
ответ: у семерых козлят и мамы-козы теперь есть 22 салфетки.
а) Обозначим точки пересечения лучей с отрезком BM — буквами P и R (см. рисунок), и пусть O — точка пересечения диагоналей параллелограмма, а N — точка пересечения луча AP и прямой BC.
Точка R делит медиану BM треугольника ABD в отношении 2 :1 считая от B. Следовательно, R лежит на медиане AO этого треугольника, то есть луч AR содержит диагональ AC .
б) Пусть L — точка пересечения AN и BD. Нужно найти площадь четырёхугольника LNCO. Пусть площадь параллелограмма равна S . Площадь треугольника BOC равна Найдём площадь треугольника BNL . Из подобия треугольников BPN и MPA следует, что
откуда
Теперь из подобия треугольников BNL и DAL следует, что их соответствующие высоты относятся как 1:4 , а поэтому высота треугольника BNL, проведённая к BN, составляет высоты параллелограмма, проведённой к стороне BC.
Поэтому
Следовательно, площадь четырёхугольника LNCO равна
Пошаговое объяснение:
1 скатерть = 4 салфетки,обозначим это а₁=4,
Каждый следующий козлёнок брал 1 салфетку,а возвращал в сундук 4,
4-1=3 -то есть прибавлял 3 салфетки в сундук,на одну меньше,чем первый козлёнок,обозначим это а₂=а₁-1=3,
Все следующие козлята,а их было 6-ть, так же брали 1 салфетку,а возвращали 4,то есть шестеро козлят добавили по 3 салфетки каждый,отсюда получаем
а₂ * 6 = 3 * 6=18 -обозначим это d=а₂* 6,
Составим выражение,где а₇ -это общее количество получившихся салфеток:
а₇=а₁+ d =а₁+а₂ * 6=4 + 3*6=4+18 = 22-салфетки,
ответ: у семерых козлят и мамы-козы теперь есть 22 салфетки.