Найдем производную функции: . приравняем первую производную к нулю и решим уравнение: . Откуда получаем или (х+65)=0. в первом случае решений нет, так как не существует такой степени, чтобы при возведении в нее числа (кроме нуля) получался ноль. Значит, x = - 65 - точка минимума, так как на интервале (-∞;-65) производная функции отрицательна, а сама функция убывает; а на интервале (-65; +∞) функция возрастает, т.к. производная на этом интервале положительная. вычислим значение функции в точке минимума: . P.S.: хотя по условию значение функции в этой точке и не нужно, но коли уж я напечатала. то мне жалко стирать свой труд)))
Если будешь использовать решение, предложенное Троллем, то вот формулы:
S - площадь треугольника со сторонами a, b, с
p - его полупериметр, т.е. (a+b+c)/2
r - радиус вписанной в него окружности
sqrt(z) - функция квадратного корня из величины z
S=(r/2)*(a+b+c)
S=sqrt(p*(p-a)*(p-b)*(p-c)) //ф-ла Герона
Подставив значения, получаем:
площадь треугольника (основания пирамиды) равна 336 см, радиус вписанной окружности равен 8 см
высота пирамиды из этого тоже равна 8 см. //по т. Пифагора
x - расстояния от основания высоты пирамиды до плоскостей боковых граней равны между собой, и выражаются в данном случае так:
x = sqrt(8^2-((8*sqrt(2))/2)^2) = sqrt(32) //по т. Пифагора
x = 4*sqrt(2) - "четыре корня из двух"
Пошаговое объяснение:
.
приравняем первую производную к нулю и решим уравнение:
. Откуда получаем
или (х+65)=0.
в первом случае решений нет, так как не существует такой степени, чтобы при возведении в нее числа (кроме нуля) получался ноль.
Значит, x = - 65 - точка минимума, так как на интервале (-∞;-65) производная функции отрицательна, а сама функция убывает; а на интервале (-65; +∞) функция возрастает, т.к. производная на этом интервале положительная.
вычислим значение функции в точке минимума:
.
P.S.: хотя по условию значение функции в этой точке и не нужно, но коли уж я напечатала. то мне жалко стирать свой труд)))