(Построить графики не смогу, но закон распределения и функцию распределения найду). Пусть случайная величина (далее - СВ) х - число неточных приборов среди трёх взятых. Очевидно, что эта СВ может принимать значения 0,1,2,3. Вычислим вероятности этих значений: р(0)=(14/20)³=2744/8000=0,343, р(1)=(6/20)¹*(14/20)²*3!/(1!*(3-1)!)=1176/8000*6/2=3528/8000=0,441, р(2)=(6/20)²*(14/20)¹*3!/(2!*(3-2)!)=1512/8000=0,189, р(3)=(6/20)³=216/8000=0,027. (Проверка: 0,343+0,441+0,189+0,027=1, так что вероятности найдены верно) Таким образом, мы нашли закон распределения данной СВ, который можно записать в виде таблицы: Xi 0 1 2 3 Pi 0,343 0,441 0,189 0,027 По найденным данным можно построить многоугольник распределения и функцию распределения. Математическое ожидание М=∑Xi*Pi=0*0,343+1*0,441+2*0,189+3*0,027=0,9 Дисперсия D=∑(Xi-M)²*Pi=(0-0,9)²*0,343+(1-0,9)²*0,441+(2-0,9)²*0,189+(3-0,9)²*0,027=0,27783+0,00441+0,22869+0,11907=0,63.удачи
1) Допустим, он спросил у рыцаря. Рыцарь дал верный ответ: "Да. Среди нас хотя бы один - рыцарь". Но тут возникает неоднозначность, потому что второй может быть как рыцарем, так и лжецом, поскольку первый рыцарь, и уже выполняется условие, что среди них хоть кто-то рыцарь. 2) Допустим, он спросил у лжеца. Если лжец ответил: "Да, среди нас есть рыцарь", то среди них нет рыцаря. То есть второй - тоже лжец. Если лжец ответил: "Нет, среди нас нет рыцарей", то среди них есть рыцарь. Это второй островитянин. Если автор получил, что хотел, то ему подходит пункт 2. То есть первый лжец, а в зависимости от его ответа второй либо рыцарь, либо тоже лжец.
Но, возможно, это не всё решение задачи. Следует еще подумать над тем, а не являются ли эти островитяне единственными, кто населяет остров
2) Допустим, он спросил у лжеца. Если лжец ответил: "Да, среди нас есть рыцарь", то среди них нет рыцаря. То есть второй - тоже лжец.
Если лжец ответил: "Нет, среди нас нет рыцарей", то среди них есть рыцарь. Это второй островитянин.
Если автор получил, что хотел, то ему подходит пункт 2. То есть первый лжец, а в зависимости от его ответа второй либо рыцарь, либо тоже лжец.
Но, возможно, это не всё решение задачи. Следует еще подумать над тем, а не являются ли эти островитяне единственными, кто населяет остров