Система векторов a1,a2,...,an называется линейно зависимой, если существуют числа λ1,λ2,...,λn такие, что хотя бы одно из них отлично от нуля и λ1a1+λ2a2+...+λnan=0. В противном случае система называется линейно независимой.
Два вектора a1 и a2 называются коллинеарными если их направления совпадают или противоположны.
Три вектора a1,a2 и a3 называются компланарными если они параллельны некоторой плоскости.
Геометрические критерии линейной зависимости:
а) система {a1,a2} линейно зависима в том и только том случае, когда векторы a1 и a2 коллинеарны.
б) система {a1,a2,a3} линейно зависима в том и только том случае, когда векторы a1,a2 и a3 компланарны.
Примеры.
2.19.
Разложить вектор s=a+b+c по трем некомпланарным векторам: p=a+b−2c, q=a−b, r=2b+3c.
Решение.
Найдем такие α,β и γ, что s=αp+βq+γr:
s=a+b+c=α(a+b−2c)+β(a−b)+γ(2b+3c)=
=a(α+β)+b(α−β+2γ)+c(−2α+3γ).
Из этого равенства, приравнивая коэффициенты при a,b и c получаем систему уравнений:
Система векторов a1,a2,...,an называется линейно зависимой, если существуют числа λ1,λ2,...,λn такие, что хотя бы одно из них отлично от нуля и λ1a1+λ2a2+...+λnan=0. В противном случае система называется линейно независимой.
Два вектора a1 и a2 называются коллинеарными если их направления совпадают или противоположны.
Три вектора a1,a2 и a3 называются компланарными если они параллельны некоторой плоскости.
Геометрические критерии линейной зависимости:
а) система {a1,a2} линейно зависима в том и только том случае, когда векторы a1 и a2 коллинеарны.
б) система {a1,a2,a3} линейно зависима в том и только том случае, когда векторы a1,a2 и a3 компланарны.
Примеры.
2.19.
Разложить вектор s=a+b+c по трем некомпланарным векторам: p=a+b−2c, q=a−b, r=2b+3c.
Решение.
Найдем такие α,β и γ, что s=αp+βq+γr:
s=a+b+c=α(a+b−2c)+β(a−b)+γ(2b+3c)=
=a(α+β)+b(α−β+2γ)+c(−2α+3γ).
Из этого равенства, приравнивая коэффициенты при a,b и c получаем систему уравнений:
⎧⎩⎨⎪⎪1=α+β1=α−β+2γ1=−2α+3γ
Решим эту систему уравнений методом Крамера:
Δ=∣∣∣∣11−21−10023∣∣∣∣=−3−4−3=−10,
Δ1=∣∣∣∣1111−10023∣∣∣∣=−3+2−3=−4,
Δ2=∣∣∣∣11−2111023∣∣∣∣=3−4−2−3=−6,
Δ3=∣∣∣∣11−21−10111∣∣∣∣=−1−2−2−1=−6,
α=Δ1Δ=−4−10=25;β=Δ2Δ=−6−10=35;γ=Δ3Δ=−6−10=35.
Таким образом, s=25p+35q+35r.
ответ: s=25p+35q+35r.
Пошаговое объяснение:
а = 20 см - длина
b = 12 см - ширина
с = 24 см - высота
V = abc = 20 · 12 · 24 = 5760 см³ - объём прямоугольного параллелепипеда
20 = 2² · 5 12 = 2² · 3 24 = 2³ · 3
НОД (20, 12 и 24) = 2² = 4 - наибольший общий делитель ⇒ параллелепипед можно разрезать на кубики с ребром 2 см или 4 см
2³ = 2 · 2 · 2 = 8 см³ - объём одного кубика
5760 : 8 = 720 - количество кубиков
Или так:
20 : 2 = 10 раз по 2 см в длину
12 : 2 = 6 раз по 2 см в ширину
24 : 2 = 12 раз по 2 см в высоту
10 · 6 · 12 = 720 - количество кубиков с ребром 2 см
ответ: 720 кубиков.