Преобразуем исходное выражение так, чтобы в левой части было произведение, а в правой одно число:
m × n = m + n + 2017 m × n - m - n = 2017 m (n - 1) - n = 2017 m (n - 1) - n + 1 - 1 = 2017 m (n - 1) - (n - 1) = 2018 (n - 1) (m - 1) = 2 × 1019 (других вариантов разложения на простые множители числа 2018 просто нет, т.к. числа д.б. натуральными)
Следовательно, n - 1 = 2; m - 1 = 1009 (или наоборот, что неважно). Итак, n = 3, m = 1010, а их произведение m × n = 3030
m × n = m + n + 2017
m × n - m - n = 2017
m (n - 1) - n = 2017
m (n - 1) - n + 1 - 1 = 2017
m (n - 1) - (n - 1) = 2018
(n - 1) (m - 1) = 2 × 1019 (других вариантов разложения на простые множители числа 2018 просто нет, т.к. числа д.б. натуральными)
Следовательно, n - 1 = 2; m - 1 = 1009 (или наоборот, что неважно).
Итак, n = 3, m = 1010, а их произведение m × n = 3030
Проверка:
3030 = 1010 + 3 + 2017
ответ: 3030