Далее в тексте будем подразумевать под биквадратным трёхчленом и его коэффициентами выражение где под подразумевается квадрат переменной т.е. а его корнями – квадраты искомых корней, если они различны, или его чётным корнем если корень биквадратного трёхчлена – единственный.
Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле тогда Потребуем, чтобы откуда следует, что
Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при а корень биквадратного трёхчлена станет чётным давая два искомых корня Это значение как раз уже и есть одно из искомых решений для параметра
Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно Отсюда следует, что правый квадрат искомых корней – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки А значит, значение всего трёхчлена взятое от должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.
Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле тогда Потребуем, чтобы откуда следует, что
Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при а корень биквадратного трёхчлена станет чётным давая два искомых корня Это значение как раз уже и есть одно из искомых решений для параметра
Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно Отсюда следует, что правый квадрат искомых корней – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки А значит, значение всего трёхчлена взятое от должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.
Отсюда: ;
;
;
О т в е т :
Y = x³ - 1/3*x
ИССЛЕДОВАНИЕ.
1. Область определения.
Х∈(-∞,+∞)
2. Пересечение с осью Х - корни функции
Y = x*(x² - 1/3.
Корни - х1=0 и х2 = - 1/√3 и х3 = 1/√3.
3. Пересечение с осью У.
У(0) = 0.
4. Поведение на бесконечности
У(-∞) = -∞
У(+∞) = +∞
5. Исследование на четность.
Y(-х) = - (3x³ - x)/3
Y(x) = (3x³-x)/3
Функция нечетная.
6. Производная функции - красная парабола
Y' = 3x² - 1/3
7. Корни производной - точки экстремумов.
х1 = - 1/3 и х2 = 1/3.
8. Значения в точках экстремума.
Ymax(- 1/3) = 0.074
Ymin(1/3) = - 0.074
9. Возрастает - Х∈(-∞;-1/3]∪[1/3;+∞)
Убывает - Х∈[-1/3; 1/3]
10. Вторая производная - точка перегиба - зеленая прямая
Y" = 6x = 0
точка перегиба - Х=0.
11.
Выпуклая - Y" <0 X∈(-∞;0] - желтая
Вогнутая - Y" >0 X∈[;+∞). - синяя