28 голов
Пошаговое объяснение:
Обозначим общее количество голов дракона х
Тогда количество голов после удара первого богатыря будет - a,
после второго богатыря - b.
Вот так:
(х : 2) - 2 = а - остаток голов после первого богатыря
(а : 2) - 2 = b - остаток голов после второго богатыря
(b : 2) - 2 = 0 - остаток голов после третьего богатыря, то есть ни одной.
Решение начинать будем с конца.
(b : 2) - 2 = 0
b/2 - 2 = 0
Прибавим 2 к обеим частям уравнения:
b/2 - 2 + 2 = 0 + 2
b/2 = 2
b = 2 • 2
b = 4
Мы нашли количество голов, которые остались у дракона после второго богатыря. И которые рубил третий богатырь.
Теперь подставляем b в наше уравнение:
(а : 2) - 2 = b
a/2 - 2 = 4
a/2 = 4 + 2
a/2 = 6
a = 6 • 2
a = 12
Тут мы нашли количество голов, которые остались у дракона после первого богатыря. И которые рубил второй богатырь
Теперь вычислим сколько голов было с самого начала
(х : 2) - 2 = а
(х : 2) - 2 = 12
х/2 - 2 = 12
х/2 = 12 + 2
х/2 = 14
х = 14 • 2 = 28
Столько голов было у дракона с самого начала.
Пока богатыри его не убили, несчастного.
ответ: 28 голов
А, ну и проверочка, конечно
(28 : 2) + 2 = 16 голов срубил первый богатырь, видимо Илья Муромец
28 - 16 = 12 - столько голов он оставил двум другим богатырям
(12 : 2) + 2 = 8 - столько голов срубил второй богатырь. Скорее всего Добрыня Никитич.
12 - 8 = 4 - осталось после него драконьих голов
(4 : 2) + 2 = 4 - вот 4 последние головы срубил последний богатырь. Алёша Попович скорее всего)
4 - 4 = 0 вот и закончились даконьи головы)
* В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Дано:
а) ∠А1В1С1 - линейный угол двугранного угла АВВ1С,
т.к. данная фигура - куб.
б) Надо найти угол между плоскостями
∠ADB - линейный угол двугранного угла ADD1B;
в) Проведем B1K; проведем KE || AA1; проведем диагональ квадрата ВЕ. Требуется найти линейную меру двугранного угла между
плоскостями АА1В1В и KB1BE. А1В1 ⊥ ВВ1, B1K ⊥ ВВ1.
Таким образом, ∠А1В1K - линейный угол двугранного угла ABB1K.
28 голов
Пошаговое объяснение:
Обозначим общее количество голов дракона х
Тогда количество голов после удара первого богатыря будет - a,
после второго богатыря - b.
Вот так:
(х : 2) - 2 = а - остаток голов после первого богатыря
(а : 2) - 2 = b - остаток голов после второго богатыря
(b : 2) - 2 = 0 - остаток голов после третьего богатыря, то есть ни одной.
Решение начинать будем с конца.
(b : 2) - 2 = 0
b/2 - 2 = 0
Прибавим 2 к обеим частям уравнения:
b/2 - 2 + 2 = 0 + 2
b/2 = 2
b = 2 • 2
b = 4
Мы нашли количество голов, которые остались у дракона после второго богатыря. И которые рубил третий богатырь.
Теперь подставляем b в наше уравнение:
(а : 2) - 2 = b
a/2 - 2 = 4
a/2 = 4 + 2
a/2 = 6
a = 6 • 2
a = 12
Тут мы нашли количество голов, которые остались у дракона после первого богатыря. И которые рубил второй богатырь
Теперь вычислим сколько голов было с самого начала
(х : 2) - 2 = а
(х : 2) - 2 = 12
х/2 - 2 = 12
х/2 = 12 + 2
х/2 = 14
х = 14 • 2 = 28
Столько голов было у дракона с самого начала.
Пока богатыри его не убили, несчастного.
ответ: 28 голов
А, ну и проверочка, конечно
(28 : 2) + 2 = 16 голов срубил первый богатырь, видимо Илья Муромец
28 - 16 = 12 - столько голов он оставил двум другим богатырям
(12 : 2) + 2 = 8 - столько голов срубил второй богатырь. Скорее всего Добрыня Никитич.
12 - 8 = 4 - осталось после него драконьих голов
(4 : 2) + 2 = 4 - вот 4 последние головы срубил последний богатырь. Алёша Попович скорее всего)
4 - 4 = 0 вот и закончились даконьи головы)
* В задачах этого параграфа двугранный угол с ребром АВ, на разных гранях которого отмечены точки С и D, для краткости будем называть так: двугранный угол CABD.
Дано:
а) ∠А1В1С1 - линейный угол двугранного угла АВВ1С,
т.к. данная фигура - куб.
б) Надо найти угол между плоскостями
∠ADB - линейный угол двугранного угла ADD1B;
в) Проведем B1K; проведем KE || AA1; проведем диагональ квадрата ВЕ. Требуется найти линейную меру двугранного угла между
плоскостями АА1В1В и KB1BE. А1В1 ⊥ ВВ1, B1K ⊥ ВВ1.
Таким образом, ∠А1В1K - линейный угол двугранного угла ABB1K.