Вот смотри, у тебя в числителе 2х^3+5, где 2 и (+5) не играет особой роли, в знаменателе та же история, только там х^2
Теперь обратим внимание на то, что есть формула
где х стремится к бесконечности. (если не преобразилась формула то там написано предел, х-> к бесконечности, в числителе х^n, в знаменателе x^(n-1) вообще не обязательно может быть минус 1, но как факт чстепень числителя больше степени знаменателя)
из этой формулы делаем вывод что ответ будет бесконечность.
Надеюсь, что все понятно объяснила, если да, то сделай лучшим
бесконечность
Пошаговое объяснение:
Вот смотри, тут решать особо и не надо.
Вот смотри, у тебя в числителе 2х^3+5, где 2 и (+5) не играет особой роли, в знаменателе та же история, только там х^2
Теперь обратим внимание на то, что есть формула
где х стремится к бесконечности. (если не преобразилась формула то там написано предел, х-> к бесконечности, в числителе х^n, в знаменателе x^(n-1) вообще не обязательно может быть минус 1, но как факт чстепень числителя больше степени знаменателя)
из этой формулы делаем вывод что ответ будет бесконечность.
Надеюсь, что все понятно объяснила, если да, то сделай лучшим
приведу решение другим
составим "дерево вероятности"
по условию "Среди них валиков, изготовленных на первом станке, в 3 раза больше, чем на втором"- значит полная вероятность =1
тогда на 3х(1 станок)+х(второй станок)=1
тогда х= 0,25, 3х=0,75
теперь рисуем "дерево"
валики
1 станок 0,75 2 станок 0,25
высший сорт /не высший сорт высший сорт/ не высший сорт
0,92 / 0,08 0,8 / 0,2
тогда всего валиков высшего сорта 0,75*0,92+0,25*0,8=0,89
валиков высшего сорта с 1 станка 0,75*0,92= 0,69
Тогда выроятность валика высшего сорта с первого станка 0,69/0,89=69/89 ≈0,775