Жили были цифры 5 и 10.И любили они друг друга так сильно что хотели быть всегда вместе.И вот один индийский мудрец говорит им:5,ты должна встать на 10 и тогда получится :"дробь". -Дробь?-переспросил 10 -Да-спокойно ответил мудрец Встала 5 на своего любимого и ждёт.А мудрец в это время идёт к людям и говорит: -Вот!Моё новое открытие!Это дробь.Она читается как пять десятых.-далее мудрец подробно объяснил что это такое. -Это изумительная идея!-загудел народ. И стали люди писать части дробями,а каждый раз когда записыват дробь пять десятых,красавица 5 и красавец 10 дружно радуются.
Пошаговое объяснение: Так как уравнение должно иметь ровно 1 корень=> этот корень кратности 3 и значит данный многочлен раскладывается на (bx+-c)^3 и так как корень отрицательный значит берём знак +;
-Дробь?-переспросил 10
-Да-спокойно ответил мудрец
Встала 5 на своего любимого и ждёт.А мудрец в это время идёт к людям и говорит:
-Вот!Моё новое открытие!Это дробь.Она читается как пять десятых.-далее мудрец подробно объяснил что это такое.
-Это изумительная идея!-загудел народ.
И стали люди писать части дробями,а каждый раз когда записыват дробь пять десятых,красавица 5 и красавец 10 дружно радуются.
Пошаговое объяснение: Так как уравнение должно иметь ровно 1 корень=> этот корень кратности 3 и значит данный многочлен раскладывается на (bx+-c)^3 и так как корень отрицательный значит берём знак +;
(Bx+C)^3=(Bx)^3+3*(Bx)^2*c+3*bx*c^2+c^3=3x^3-x^2-7x+a-2
Из этого видно, что b= Кубическийкореньиз3=>3x^3-x^2-7x+a-2=3x^3+3*(кубическийкореньиз3)^2*x^2*c+3*кубическийкореньиз3*c^2*x+c^3
-x^2-7x+a-2=3*(кубическийкореньиз3)^2*x^2*c+3*кубическийкореньиз3*c^2*x+c^3 из этого с легкостью можем найти С.
-x^2=3*(кубическийкореньиз3)^2*x^2*c
-1=3*(кубическийкореньиз3)^2*c
С=-1/(3*(кубическийкореньиз3)^2)
=>a-2=(-1/(3*(кубическийкореньиз3)^2))^3
a-2=-1/(27*9)
a-2=-1/243
a=485/243