1. а)0,64 б) 7,8 2. скоко кг фруктов продали ? 65%=0.65 240*0.65=156 (кг) скоко кг фруктов осталось? 240-156=84 (кг) ответ:осталось 84 кг 3. 48 % = 0,48 1) 850*0,48 = 408 (л.) - молока разлили в бидоны. 2) 850-408 = 442 (л.) - осталось. ответ: 442 литров молока осталось в цистерне. 4. v=25.2 a=3.5 b=1.6 c=?
V=abc => c=V/(ab) c=25.2/(3.5*1.6)=4.5 ответ: 4,5 дм 5. Объем прямоугольного параллелепипеда равен произведению трех его измерений, т. е. длины, ширины и высоты.
Зная объем, высоту и длину, можно найти ширину: 1,35 : (2,25 * 0,8) = 0,75 м 6. а)2,5y+31+2,3y=67 2,5y+2,3y=67-31 4,8у=36 у=36:4,8 у=7,5 ответ: y=7,5
б)3,2х + 0,4х = 40 - 13 3,6х =27 х=7,5 ответ: х=7,5 7. 110+46=156 градусов ответ:156 8. если это треугольник( а это скорей всего так) то будет так: угол adb=180-120-34=26 градусов
Главная проблема использования одноключевых (симметричных) криптосистем заключается в распределении ключей. Для того, чтобы был возможен обмен информацией между двумя сторонами, ключ должен быть сгенерирован одной из них, а затем в конфиденциальном порядке передан другой. Особую остроту данная проблема приобрела в наши дни, когда криптография стала общедоступной, вследствие чего количество пользователей больших криптосистем может исчисляться сотнями и тысячами.
Начало асимметричным шифрам было положено в работе «Новые направления в современной криптографии» Уитфилда Диффи и Мартина Хеллмана, опубликованной в 1976 году. Находясь под влиянием работы Ральфа Меркле (Ralph Merkle) о рас открытого ключа, они предложили метод получения секретных ключей для симметричного шифрования, используя открытый канал. В 2002 году Хеллман предложил называть данный алгоритм «Диффи - Хеллмана - Меркле», признавая вклад Меркле в изобретение криптографии с открытым ключом.
Хотя работа Диффи-Хеллмана создала большой теоретический задел для открытой криптографии, первой реальной криптосистемой с открытым ключом считают алгоритм RSA (названный по имени авторов - Рон Ривест (Ronald Linn Rivest), Ади Шамир (Adi Shamir) и Леонард Адлеман (Leonard Adleman) из Массачусетского Технологического Института (MIT)).
Справедливости ради следует отметить, что в декабре 1997 года была обнародована информация, согласно которой британский математик Клиффорд Кокс (Clifford Cocks), работавший в центре правительственной связи (GCHQ) Великобритании, описал систему, аналогичную RSA, в 1973 году, а несколькими месяцами позже в 1974 году Малькольм Вильямсон изобрел математический алгоритм, аналогичный алгоритму Диффи – Хеллмана - Меркле.
Суть шифрования с открытым ключом заключается в том, что для шифрования данных используется один ключ, а для расшифрования другой (поэтому такие системы часто называют асимметричными).
Основная предпосылка, которая привела к появлению шифрования с открытым ключом, заключалось в том, что отправитель сообщения (тот, кто зашифровывает сообщение), не обязательно должен быть его расшифровывать. Т.е. даже имея исходное сообщение, ключ, с которого оно шифровалось, и зная алгоритм шифрования, он не может расшифровать закрытое сообщение без знания ключа расшифрования.
Первый ключ, которым шифруется исходное сообщение, называется открытым и может быть опубликован для использования всеми пользователями системы. Расшифрование с этого ключа невозможно. Второй ключ, с которого дешифруется сообщение, называется секретным (закрытым) и должен быть известен только законному получателю закрытого сообщения.
Алгоритмы шифрования с открытым ключом используют так называемые необратимые или односторонние функции. Эти функции обладают следующим свойством: при заданном значении аргумента х относительно вычислить значение функции (x), однако, если известно значение функции y = f(x), то нет пути для вычисления значения аргумента x. Например, функция SIN. Зная x, легко найти значение SIN(x) (например, x = , тогда SIN() = 0). Однако, если SIN(x) = 0, однозначно определить х нельзя, т.к. в этом случае х может быть любым числом, определяемым по формуле i * , где i – целое число.
Однако не всякая необратимая функция годится для использования в реальных криптосистемах. В их числе и функция SIN. Следует также отметить, что в самом определении необратимости функции присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства за обозримый интервал времени.
а)0,64
б) 7,8
2.
скоко кг фруктов продали ?
65%=0.65
240*0.65=156 (кг)
скоко кг фруктов осталось?
240-156=84 (кг)
ответ:осталось 84 кг
3.
48 % = 0,48
1) 850*0,48 = 408 (л.) - молока разлили в бидоны.
2) 850-408 = 442 (л.) - осталось.
ответ: 442 литров молока осталось в цистерне.
4.
v=25.2
a=3.5
b=1.6
c=?
V=abc => c=V/(ab)
c=25.2/(3.5*1.6)=4.5
ответ: 4,5 дм
5.
Объем прямоугольного параллелепипеда равен произведению трех его измерений, т. е. длины, ширины и высоты.
Зная объем, высоту и длину, можно найти ширину: 1,35 : (2,25 * 0,8) = 0,75 м
6.
а)2,5y+31+2,3y=67
2,5y+2,3y=67-31
4,8у=36
у=36:4,8
у=7,5
ответ: y=7,5
б)3,2х + 0,4х = 40 - 13
3,6х =27
х=7,5
ответ: х=7,5
7.
110+46=156 градусов
ответ:156
8.
если это треугольник( а это скорей всего так) то будет так: угол adb=180-120-34=26 градусов
Главная проблема использования одноключевых (симметричных) криптосистем заключается в распределении ключей. Для того, чтобы был возможен обмен информацией между двумя сторонами, ключ должен быть сгенерирован одной из них, а затем в конфиденциальном порядке передан другой. Особую остроту данная проблема приобрела в наши дни, когда криптография стала общедоступной, вследствие чего количество пользователей больших криптосистем может исчисляться сотнями и тысячами.
Начало асимметричным шифрам было положено в работе «Новые направления в современной криптографии» Уитфилда Диффи и Мартина Хеллмана, опубликованной в 1976 году. Находясь под влиянием работы Ральфа Меркле (Ralph Merkle) о рас открытого ключа, они предложили метод получения секретных ключей для симметричного шифрования, используя открытый канал. В 2002 году Хеллман предложил называть данный алгоритм «Диффи - Хеллмана - Меркле», признавая вклад Меркле в изобретение криптографии с открытым ключом.
Хотя работа Диффи-Хеллмана создала большой теоретический задел для открытой криптографии, первой реальной криптосистемой с открытым ключом считают алгоритм RSA (названный по имени авторов - Рон Ривест (Ronald Linn Rivest), Ади Шамир (Adi Shamir) и Леонард Адлеман (Leonard Adleman) из Массачусетского Технологического Института (MIT)).
Справедливости ради следует отметить, что в декабре 1997 года была обнародована информация, согласно которой британский математик Клиффорд Кокс (Clifford Cocks), работавший в центре правительственной связи (GCHQ) Великобритании, описал систему, аналогичную RSA, в 1973 году, а несколькими месяцами позже в 1974 году Малькольм Вильямсон изобрел математический алгоритм, аналогичный алгоритму Диффи – Хеллмана - Меркле.
Суть шифрования с открытым ключом заключается в том, что для шифрования данных используется один ключ, а для расшифрования другой (поэтому такие системы часто называют асимметричными).
Основная предпосылка, которая привела к появлению шифрования с открытым ключом, заключалось в том, что отправитель сообщения (тот, кто зашифровывает сообщение), не обязательно должен быть его расшифровывать. Т.е. даже имея исходное сообщение, ключ, с которого оно шифровалось, и зная алгоритм шифрования, он не может расшифровать закрытое сообщение без знания ключа расшифрования.
Первый ключ, которым шифруется исходное сообщение, называется открытым и может быть опубликован для использования всеми пользователями системы. Расшифрование с этого ключа невозможно. Второй ключ, с которого дешифруется сообщение, называется секретным (закрытым) и должен быть известен только законному получателю закрытого сообщения.
Алгоритмы шифрования с открытым ключом используют так называемые необратимые или односторонние функции. Эти функции обладают следующим свойством: при заданном значении аргумента х относительно вычислить значение функции (x), однако, если известно значение функции y = f(x), то нет пути для вычисления значения аргумента x. Например, функция SIN. Зная x, легко найти значение SIN(x) (например, x = , тогда SIN() = 0). Однако, если SIN(x) = 0, однозначно определить х нельзя, т.к. в этом случае х может быть любым числом, определяемым по формуле i * , где i – целое число.
Однако не всякая необратимая функция годится для использования в реальных криптосистемах. В их числе и функция SIN. Следует также отметить, что в самом определении необратимости функции присутствует неопределенность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение, используя современные вычислительные средства за обозримый интервал времени.
Пошаговое объяснение: