ответ здесь не такой будет. Пусть n>1. Рассмотрим несвязный граф, в котором одна вершина ни с чем не соединена, а остальные соединены попарно. Тогда в графе (n−1)(n−2)/2 рёбер, и он не связен. Если количество рёбер увеличить на единицу, то их получится (n−1)(n−2)/2+1, и здесь уже связность графа гарантирована. Действительно, если компонент связности как минимум две, и одна из них содержит k вершин, где 1<k<n, то количество отсутствующих рёбер не меньше k(n−k). Эта величина не меньше n−1 ввиду неравенства kn−k2−n+1=(k−1)(n−(k+1))≥0, а у нас отсутствует меньше рёбер.
Наполненный басейн примем за единицу (целое).
1) 1 : 2 = 1/2 - часть бассейна, наполняемая через одну трубу за 1 час;
2) 1 : 10 = 1/10 - часть бассейна, наполняемая через другую трубу за 1 час;
3) 3 ч 45 мин = 3 45/60 ч = 3 3/4 ч = 15/4 ч
1 : 15/4 = 1 · 4/15 = 4/15 - часть бассейна, которую выкачает насос за 1 час;
4) 1/2 + 1/10 - 4/15 = 15/30 + 3/30 - 8/30 = 10/30 = 1/3 - часть бассейна, наполняемая за 1 час при одновременной работе двух труб и насоса;
5) 1 : 1/3 = 1 · 3/1 = 3 (ч) - время наполнения бассейна.
Відповідь: за 3 години наповниться басейн при одночасній роботі двох труб і насоса.
ответ здесь не такой будет. Пусть n>1. Рассмотрим несвязный граф, в котором одна вершина ни с чем не соединена, а остальные соединены попарно. Тогда в графе (n−1)(n−2)/2 рёбер, и он не связен. Если количество рёбер увеличить на единицу, то их получится (n−1)(n−2)/2+1, и здесь уже связность графа гарантирована. Действительно, если компонент связности как минимум две, и одна из них содержит k вершин, где 1<k<n, то количество отсутствующих рёбер не меньше k(n−k). Эта величина не меньше n−1 ввиду неравенства kn−k2−n+1=(k−1)(n−(k+1))≥0, а у нас отсутствует меньше рёбер.
Пошаговое объяснение:
Надеюсь