О- точка пересечения ВД и СК. Треугольник ВСД равнобедренный тк угол СДВ =углу АДВ (по условию) = углу СВД (т.к АДВ и СВД накрест лежащие при СВ //АД и секущей ВД. СК является по усл. биссектр.,значит она медиона и высота треугольника ВСД. угол ВСК = углу ДСК = углу СКД. Значит треугольник КСД равнобедр. с основанием КС. ДО - биссектрисса, проведенная к его основанию, поэтому она является медианой и высотой. Получаем КО =СО =18:2=9, ВО =ДО = 24:2 =12. из треугольника СОД по т.ПИфагора найдем СД : СД=15, т.к. треугольник КСД равнобедренный с основанием КС, то КД=15. По формуле Герона найдем площадь треугольника КСД : \sqrt{24*(24-18)*(24-15)*(24-15) = 108, с другой стороны площадь треугольника равна половине произведения основания на высоту получаем уравнение 108=0,5 *15*Н. получаем Н=14,4
Обозначим CD = DP = у, AB = AP = х, M и N — основания перпендикуляров, опущенных из вершин соответственно B и C на AD.
Тогда PN = √(17² - 8²) = 15,
PM = √(10² - 8²) = 6.Следовательно, BC = MN = PM + PN = 15 + 6 = 21.
По теореме Пифагора х² = ВМ² +(х-6)² = 8² + (х-6)².
х² = 64 + х² - 12х + 36.
12х = 100,
Отсюда находим, что х = 100/12 = 25/3 = 250/30. Аналогично, 8² = у² - (у - 15)²,
64 = у² - у² + 30у - 225,
30у = 289.
Отсюда находим, что y = 289/30.
Следовательно, основание AD = AP + PD = х +y = (250+289)/30 = 539/30.
Произведение большего основания на 30 равно 539.