Симметричность в условии означает, что вероятность выпадения орла = P(орла) = Р(о) равна вероятности выпадения решки = P(решки) = Р(р). А так как две эти вероятности составляют полную группу событий (считаем, что в результате каждого броска возможен лишь один из этих двух исходов), т.е. P(o) + P(р) = 1, то, используя полученное выше равенство получаем : P(o) + P(0) = 1 => Р(о) = Р(р) = 0.5 или 50 процентов.
Т.к. броски монеты события независимые, то итоговая вероятность есть произведение вероятностей на каждом из них.
Симметричность в условии означает, что вероятность выпадения орла = P(орла) = Р(о) равна вероятности выпадения решки = P(решки) = Р(р). А так как две эти вероятности составляют полную группу событий (считаем, что в результате каждого броска возможен лишь один из этих двух исходов), т.е. P(o) + P(р) = 1, то, используя полученное выше равенство получаем : P(o) + P(0) = 1 => Р(о) = Р(р) = 0.5 или 50 процентов.
Т.к. броски монеты события независимые, то итоговая вероятность есть произведение вероятностей на каждом из них.
А так как две эти вероятности составляют полную группу событий (считаем, что в результате каждого броска возможен лишь один из этих двух исходов), т.е. P(o) + P(р) = 1, то, используя полученное выше равенство получаем : P(o) + P(0) = 1 => Р(о) = Р(р) = 0.5 или 50 процентов.
Т.к. броски монеты события независимые, то итоговая вероятность есть произведение вероятностей на каждом из них.
P(выпадения орла 4 раза) = Р(о) * Р(о) * Р(о) * Р(о) = Р(о)^4 = 0.5 ^ 4 =
= 0.0625 = 6.25 процента
А так как две эти вероятности составляют полную группу событий (считаем, что в результате каждого броска возможен лишь один из этих двух исходов), т.е. P(o) + P(р) = 1, то, используя полученное выше равенство получаем : P(o) + P(0) = 1 => Р(о) = Р(р) = 0.5 или 50 процентов.
Т.к. броски монеты события независимые, то итоговая вероятность есть произведение вероятностей на каждом из них.
P(выпадения орла 4 раза) = Р(о) * Р(о) * Р(о) * Р(о) = Р(о)^4 = 0.5 ^ 4 =
= 0.0625 = 6.25 процента