А) sinxcosx+√3 cos^2x=0 cosx(sinx+√3cosx)=0 произведение двух сомножителей равно нулю тогда, когда хотя бы один из множителей равен 0, а другой при этом существует cosx=0 x=Π/2+Πn, n€Z sinx+√3cosx=0 | : на cosx tgx+√3=0 tgx=-√3 x=-Π/3+Πk, k€Z ответ: -Π/3+Πk, k€Z; Π/2+Πn, n€Z б) cos2x+9sinx+4=0 1-2sin^2x+9sinx+4=0 -2sin^2x+9sinx+5=0 Пусть t=sinx, где t€[-1;1], тогда -2t^2+9t+5=0 D=81+40=121 t1=-9-11/-4=5 посторонний корень t2=-9+11/-4=-1/2 Вернёмся к замене sinx=-1/2 x1=-5Π/6+2Πn, n€Z x2=-Π/6+2Πn, n€Z ответ: -5Π/6+2Πn, -Π/6+2Πn, n€Z
Часовая стрелка перемещается на 1 минутное деление за 12 минут. Одно минутное деление соответствует углу 6°.
В 4 часа 22 минуты часовая стрелка пройдет после 4 часового деления одно минутное и до второго ей не будет хватать 2 минут. То есть по угловой мере 1/6 от 6°, то есть 1°. (за 2 минуты часовая стрелка проходит 2/12 от минутного деления, то есть 1/6 или 1°) Так как минутная стрелка в этот момент будет указывать на второе минутное деление после 4 часов, то угол между часовой и минутной стрелкой в этот момент составит 1°
PS Oчевидно, что часовая и минутная стрелки должны почти совпадать. То есть угол между ними должен быть меньше, чем 6°. Это происходит в 1 час 5(6) минут, 2 часа 10(11) минут, 3 часа 16(17) минут и 4 часа 21(22) минуты, ну и так далее...)) Нам нужна разница между часовой и минутной в 2 минуты при условии, что минутная точно указывает на целое число минут. Так как за 2 минуты часовая проходит 1 градус. Поэтому в 4 часа 24 минуты часовая будет указывать точно на второе деление после 4 часов. А в 4 часа 22 минуты ей не будет хватать именно 2 минут до этого положения.
Ну и, в качестве примера, - почему нас не устроит время 0 часов 1 минута: 1 минута, которую минутная стрелка сместила ее на 6 градусов относительно часовой. В это же время часовая сместилась на 1/12 минутного деления от 12 часов, то есть на 0,5°. Промежуток между ними составил 6 - 0,5 = 5,5 градуса.
cosx(sinx+√3cosx)=0
произведение двух сомножителей равно нулю тогда, когда хотя бы один из множителей равен 0, а другой при этом существует
cosx=0
x=Π/2+Πn, n€Z
sinx+√3cosx=0 | : на cosx
tgx+√3=0
tgx=-√3
x=-Π/3+Πk, k€Z
ответ: -Π/3+Πk, k€Z; Π/2+Πn, n€Z
б) cos2x+9sinx+4=0
1-2sin^2x+9sinx+4=0
-2sin^2x+9sinx+5=0
Пусть t=sinx, где t€[-1;1], тогда
-2t^2+9t+5=0
D=81+40=121
t1=-9-11/-4=5 посторонний корень
t2=-9+11/-4=-1/2
Вернёмся к замене
sinx=-1/2
x1=-5Π/6+2Πn, n€Z
x2=-Π/6+2Πn, n€Z
ответ: -5Π/6+2Πn, -Π/6+2Πn, n€Z
Часовая стрелка перемещается на 1 минутное деление за 12 минут.
Одно минутное деление соответствует углу 6°.
В 4 часа 22 минуты часовая стрелка пройдет после 4 часового
деления одно минутное и до второго ей не будет хватать 2 минут. То есть по угловой мере 1/6 от 6°, то есть 1°. (за 2 минуты часовая стрелка проходит 2/12 от минутного деления, то есть 1/6 или 1°)
Так как минутная стрелка в этот момент будет указывать на второе минутное деление после 4 часов, то угол между часовой и минутной стрелкой в этот момент составит 1°
PS Oчевидно, что часовая и минутная стрелки должны почти совпадать. То есть угол между ними должен быть меньше, чем 6°. Это происходит в 1 час 5(6) минут, 2 часа 10(11) минут, 3 часа 16(17) минут и 4 часа 21(22) минуты, ну и так далее...)) Нам нужна разница между часовой и минутной в 2 минуты при условии, что минутная точно указывает на целое число минут. Так как за 2 минуты часовая проходит 1 градус. Поэтому в 4 часа 24 минуты часовая будет указывать точно на второе деление после 4 часов. А в 4 часа 22 минуты ей не будет хватать именно 2 минут до этого положения.
Ну и, в качестве примера, - почему нас не устроит время 0 часов 1 минута:
1 минута, которую минутная стрелка сместила ее на 6 градусов относительно часовой. В это же время часовая сместилась на 1/12 минутного деления от 12 часов, то есть на 0,5°. Промежуток между ними составил 6 - 0,5 = 5,5 градуса.