Формула, которая доказывается методом математической индукции. Метод состоит в применении аксиомы, которая утверждает, что 1)если утверждение верно для п=1 2) из предположения, что оно верно для n=k с преобразований получается, что оно верно и для следующего значения n=k+1, то аксиома утверждает, что такое утверждение верно для любого натурального n
Проверяем 1) Р(1) = 1·2·3 - слева Справа 1(1+1)(1+2)(1+3)/4 1·2·3= 1(1+1)(1+2)(1+3)/4 - верно 6 = 24/4 2) Предположим, что Р(k) = k(k+1)(k+2)(k+3)/4 - верно, т.е верно равенство
1·2·3·4 + 2·3·4·5 + 3·4·5·6+... + k(k+1)(k+2) = k(k+1)(k+2)(k+3)/4 (*) Докажем, что верно равенство: 1·2·3·4 + 2·3·4·5 + 3·4·5·6+... + k(k+1)(k+2)+ (k+1)(k+2)(k+3) = (k+1)(k+2)(k+3)(k+4)/4 (**) Заменим в последнем равенстве подчеркнутое слева выражение на правую часть равенства (*) k(k+1)(k+2)(k+3)/4 + (k+1)(k+2)(k+3) = (k+1)(k+2)(k+3) ( k+4)/4 Вынесем в левой части за скобки (k+1)(k+2)(k+3) (k+1)(k+2)(k+3) ( k/4 + 1) = (k+1)(k+2)(k+3) ( k+4)/4 Доказано. На основании принципа математической индукции равенство верно для любого натурального n
у-длина огорода
ху=1500 =>х=1500/у
(х+5)(у-10)=1500
ху=(х+5)(у-10)
ху=ху-10х+5у-50
10х=5у-50 разделим на 5
2х=у-10
у=2х+10
у=2*1500/у+10
у=3000/у+10 домножим на у
у²=3000+10у
у²-10у-3000=0
D = (-10)2 - 4·1·(-3000) = 100 + 12000 = 12100
у1=(10 - √12100)/(2*1) = (10 - 110)/2 = -100/2 = -50 -не подходит
у2=(10 + √12100)/(2*1) = (10 +110)/2 =120/2 =60м- длина огорода
1500/60=150/6=75/3=25м-ширина огорода
25+5=30м-ширина сада
60-10=50м-длина сада
ответ: огород размером 60м на 25м, сад размером 50м на 30м
Метод состоит в применении аксиомы, которая утверждает, что
1)если утверждение верно для п=1
2) из предположения, что оно верно для n=k с преобразований получается, что оно верно и для следующего значения n=k+1, то
аксиома утверждает, что такое утверждение верно для любого натурального n
Проверяем
1) Р(1) = 1·2·3 - слева Справа 1(1+1)(1+2)(1+3)/4
1·2·3= 1(1+1)(1+2)(1+3)/4 - верно 6 = 24/4
2) Предположим, что Р(k) = k(k+1)(k+2)(k+3)/4 - верно, т.е верно равенство
1·2·3·4 + 2·3·4·5 + 3·4·5·6+... + k(k+1)(k+2) = k(k+1)(k+2)(k+3)/4 (*)
Докажем, что верно равенство:
1·2·3·4 + 2·3·4·5 + 3·4·5·6+... + k(k+1)(k+2)+ (k+1)(k+2)(k+3) = (k+1)(k+2)(k+3)(k+4)/4 (**)
Заменим в последнем равенстве подчеркнутое слева выражение на правую часть равенства (*)
k(k+1)(k+2)(k+3)/4 + (k+1)(k+2)(k+3) = (k+1)(k+2)(k+3) ( k+4)/4
Вынесем в левой части за скобки (k+1)(k+2)(k+3)
(k+1)(k+2)(k+3) ( k/4 + 1) = (k+1)(k+2)(k+3) ( k+4)/4
Доказано.
На основании принципа математической индукции равенство верно для любого натурального n